Metamath Proof Explorer


Theorem naddf

Description: Function statement for natural addition. (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Assertion naddf +no : ( On × On ) ⟶ On

Proof

Step Hyp Ref Expression
1 naddfn +no Fn ( On × On )
2 naddcl ( ( 𝑦 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑦 +no 𝑧 ) ∈ On )
3 2 rgen2 𝑦 ∈ On ∀ 𝑧 ∈ On ( 𝑦 +no 𝑧 ) ∈ On
4 fveq2 ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( +no ‘ 𝑥 ) = ( +no ‘ ⟨ 𝑦 , 𝑧 ⟩ ) )
5 df-ov ( 𝑦 +no 𝑧 ) = ( +no ‘ ⟨ 𝑦 , 𝑧 ⟩ )
6 4 5 eqtr4di ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( +no ‘ 𝑥 ) = ( 𝑦 +no 𝑧 ) )
7 6 eleq1d ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( ( +no ‘ 𝑥 ) ∈ On ↔ ( 𝑦 +no 𝑧 ) ∈ On ) )
8 7 ralxp ( ∀ 𝑥 ∈ ( On × On ) ( +no ‘ 𝑥 ) ∈ On ↔ ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( 𝑦 +no 𝑧 ) ∈ On )
9 3 8 mpbir 𝑥 ∈ ( On × On ) ( +no ‘ 𝑥 ) ∈ On
10 ffnfv ( +no : ( On × On ) ⟶ On ↔ ( +no Fn ( On × On ) ∧ ∀ 𝑥 ∈ ( On × On ) ( +no ‘ 𝑥 ) ∈ On ) )
11 1 9 10 mpbir2an +no : ( On × On ) ⟶ On