Step |
Hyp |
Ref |
Expression |
1 |
|
naddfn |
⊢ +no Fn ( On × On ) |
2 |
|
naddcl |
⊢ ( ( 𝑦 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑦 +no 𝑧 ) ∈ On ) |
3 |
2
|
rgen2 |
⊢ ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( 𝑦 +no 𝑧 ) ∈ On |
4 |
|
fveq2 |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( +no ‘ 𝑥 ) = ( +no ‘ 〈 𝑦 , 𝑧 〉 ) ) |
5 |
|
df-ov |
⊢ ( 𝑦 +no 𝑧 ) = ( +no ‘ 〈 𝑦 , 𝑧 〉 ) |
6 |
4 5
|
eqtr4di |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( +no ‘ 𝑥 ) = ( 𝑦 +no 𝑧 ) ) |
7 |
6
|
eleq1d |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ( +no ‘ 𝑥 ) ∈ On ↔ ( 𝑦 +no 𝑧 ) ∈ On ) ) |
8 |
7
|
ralxp |
⊢ ( ∀ 𝑥 ∈ ( On × On ) ( +no ‘ 𝑥 ) ∈ On ↔ ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( 𝑦 +no 𝑧 ) ∈ On ) |
9 |
3 8
|
mpbir |
⊢ ∀ 𝑥 ∈ ( On × On ) ( +no ‘ 𝑥 ) ∈ On |
10 |
|
ffnfv |
⊢ ( +no : ( On × On ) ⟶ On ↔ ( +no Fn ( On × On ) ∧ ∀ 𝑥 ∈ ( On × On ) ( +no ‘ 𝑥 ) ∈ On ) ) |
11 |
1 9 10
|
mpbir2an |
⊢ +no : ( On × On ) ⟶ On |