Step |
Hyp |
Ref |
Expression |
1 |
|
naddov |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no 𝐵 ) = ∩ { 𝑥 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ 𝑥 ∧ ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ 𝑥 ) } ) |
2 |
|
unss |
⊢ ( ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ 𝑥 ∧ ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ 𝑥 ) ↔ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ⊆ 𝑥 ) |
3 |
2
|
rabbii |
⊢ { 𝑥 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ 𝑥 ∧ ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ 𝑥 ) } = { 𝑥 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ⊆ 𝑥 } |
4 |
3
|
inteqi |
⊢ ∩ { 𝑥 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ 𝑥 ∧ ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ 𝑥 ) } = ∩ { 𝑥 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ⊆ 𝑥 } |
5 |
1 4
|
eqtrdi |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no 𝐵 ) = ∩ { 𝑥 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ⊆ 𝑥 } ) |