Metamath Proof Explorer


Theorem naddov3

Description: Alternate expression for natural addition. (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Assertion naddov3 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no 𝐵 ) = { 𝑥 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ⊆ 𝑥 } )

Proof

Step Hyp Ref Expression
1 naddov ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no 𝐵 ) = { 𝑥 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ 𝑥 ∧ ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ 𝑥 ) } )
2 unss ( ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ 𝑥 ∧ ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ 𝑥 ) ↔ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ⊆ 𝑥 )
3 2 rabbii { 𝑥 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ 𝑥 ∧ ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ 𝑥 ) } = { 𝑥 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ⊆ 𝑥 }
4 3 inteqi { 𝑥 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ 𝑥 ∧ ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ 𝑥 ) } = { 𝑥 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ⊆ 𝑥 }
5 1 4 eqtrdi ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no 𝐵 ) = { 𝑥 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ⊆ 𝑥 } )