Step |
Hyp |
Ref |
Expression |
1 |
|
naddunif.1 |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
2 |
|
naddunif.2 |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
3 |
|
naddunif.3 |
⊢ ( 𝜑 → 𝐴 = ∩ { 𝑥 ∈ On ∣ 𝑋 ⊆ 𝑥 } ) |
4 |
|
naddunif.4 |
⊢ ( 𝜑 → 𝐵 = ∩ { 𝑦 ∈ On ∣ 𝑌 ⊆ 𝑦 } ) |
5 |
|
naddov3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no 𝐵 ) = ∩ { 𝑤 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ⊆ 𝑤 } ) |
6 |
1 2 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 +no 𝐵 ) = ∩ { 𝑤 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ⊆ 𝑤 } ) |
7 |
|
naddfn |
⊢ +no Fn ( On × On ) |
8 |
|
fnfun |
⊢ ( +no Fn ( On × On ) → Fun +no ) |
9 |
7 8
|
ax-mp |
⊢ Fun +no |
10 |
|
snex |
⊢ { 𝐴 } ∈ V |
11 |
|
xpexg |
⊢ ( ( { 𝐴 } ∈ V ∧ 𝐵 ∈ On ) → ( { 𝐴 } × 𝐵 ) ∈ V ) |
12 |
10 2 11
|
sylancr |
⊢ ( 𝜑 → ( { 𝐴 } × 𝐵 ) ∈ V ) |
13 |
|
funimaexg |
⊢ ( ( Fun +no ∧ ( { 𝐴 } × 𝐵 ) ∈ V ) → ( +no “ ( { 𝐴 } × 𝐵 ) ) ∈ V ) |
14 |
9 12 13
|
sylancr |
⊢ ( 𝜑 → ( +no “ ( { 𝐴 } × 𝐵 ) ) ∈ V ) |
15 |
|
imassrn |
⊢ ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ ran +no |
16 |
|
naddf |
⊢ +no : ( On × On ) ⟶ On |
17 |
|
frn |
⊢ ( +no : ( On × On ) ⟶ On → ran +no ⊆ On ) |
18 |
16 17
|
ax-mp |
⊢ ran +no ⊆ On |
19 |
15 18
|
sstri |
⊢ ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ On |
20 |
19
|
a1i |
⊢ ( 𝜑 → ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ On ) |
21 |
14 20
|
elpwd |
⊢ ( 𝜑 → ( +no “ ( { 𝐴 } × 𝐵 ) ) ∈ 𝒫 On ) |
22 |
|
snex |
⊢ { 𝐵 } ∈ V |
23 |
|
xpexg |
⊢ ( ( 𝐴 ∈ On ∧ { 𝐵 } ∈ V ) → ( 𝐴 × { 𝐵 } ) ∈ V ) |
24 |
1 22 23
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 × { 𝐵 } ) ∈ V ) |
25 |
|
funimaexg |
⊢ ( ( Fun +no ∧ ( 𝐴 × { 𝐵 } ) ∈ V ) → ( +no “ ( 𝐴 × { 𝐵 } ) ) ∈ V ) |
26 |
9 24 25
|
sylancr |
⊢ ( 𝜑 → ( +no “ ( 𝐴 × { 𝐵 } ) ) ∈ V ) |
27 |
|
imassrn |
⊢ ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ ran +no |
28 |
27 18
|
sstri |
⊢ ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ On |
29 |
28
|
a1i |
⊢ ( 𝜑 → ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ On ) |
30 |
26 29
|
elpwd |
⊢ ( 𝜑 → ( +no “ ( 𝐴 × { 𝐵 } ) ) ∈ 𝒫 On ) |
31 |
|
pwuncl |
⊢ ( ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∈ 𝒫 On ∧ ( +no “ ( 𝐴 × { 𝐵 } ) ) ∈ 𝒫 On ) → ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ∈ 𝒫 On ) |
32 |
21 30 31
|
syl2anc |
⊢ ( 𝜑 → ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ∈ 𝒫 On ) |
33 |
3 1
|
eqeltrrd |
⊢ ( 𝜑 → ∩ { 𝑥 ∈ On ∣ 𝑋 ⊆ 𝑥 } ∈ On ) |
34 |
|
onintrab2 |
⊢ ( ∃ 𝑥 ∈ On 𝑋 ⊆ 𝑥 ↔ ∩ { 𝑥 ∈ On ∣ 𝑋 ⊆ 𝑥 } ∈ On ) |
35 |
33 34
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑥 ∈ On 𝑋 ⊆ 𝑥 ) |
36 |
|
vex |
⊢ 𝑥 ∈ V |
37 |
36
|
ssex |
⊢ ( 𝑋 ⊆ 𝑥 → 𝑋 ∈ V ) |
38 |
37
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ On 𝑋 ⊆ 𝑥 → 𝑋 ∈ V ) |
39 |
35 38
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
40 |
|
xpexg |
⊢ ( ( 𝑋 ∈ V ∧ { 𝐵 } ∈ V ) → ( 𝑋 × { 𝐵 } ) ∈ V ) |
41 |
39 22 40
|
sylancl |
⊢ ( 𝜑 → ( 𝑋 × { 𝐵 } ) ∈ V ) |
42 |
|
funimaexg |
⊢ ( ( Fun +no ∧ ( 𝑋 × { 𝐵 } ) ∈ V ) → ( +no “ ( 𝑋 × { 𝐵 } ) ) ∈ V ) |
43 |
9 41 42
|
sylancr |
⊢ ( 𝜑 → ( +no “ ( 𝑋 × { 𝐵 } ) ) ∈ V ) |
44 |
|
imassrn |
⊢ ( +no “ ( 𝑋 × { 𝐵 } ) ) ⊆ ran +no |
45 |
44 18
|
sstri |
⊢ ( +no “ ( 𝑋 × { 𝐵 } ) ) ⊆ On |
46 |
45
|
a1i |
⊢ ( 𝜑 → ( +no “ ( 𝑋 × { 𝐵 } ) ) ⊆ On ) |
47 |
43 46
|
elpwd |
⊢ ( 𝜑 → ( +no “ ( 𝑋 × { 𝐵 } ) ) ∈ 𝒫 On ) |
48 |
4 2
|
eqeltrrd |
⊢ ( 𝜑 → ∩ { 𝑦 ∈ On ∣ 𝑌 ⊆ 𝑦 } ∈ On ) |
49 |
|
onintrab2 |
⊢ ( ∃ 𝑦 ∈ On 𝑌 ⊆ 𝑦 ↔ ∩ { 𝑦 ∈ On ∣ 𝑌 ⊆ 𝑦 } ∈ On ) |
50 |
48 49
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑦 ∈ On 𝑌 ⊆ 𝑦 ) |
51 |
|
vex |
⊢ 𝑦 ∈ V |
52 |
51
|
ssex |
⊢ ( 𝑌 ⊆ 𝑦 → 𝑌 ∈ V ) |
53 |
52
|
rexlimivw |
⊢ ( ∃ 𝑦 ∈ On 𝑌 ⊆ 𝑦 → 𝑌 ∈ V ) |
54 |
50 53
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
55 |
|
xpexg |
⊢ ( ( { 𝐴 } ∈ V ∧ 𝑌 ∈ V ) → ( { 𝐴 } × 𝑌 ) ∈ V ) |
56 |
10 54 55
|
sylancr |
⊢ ( 𝜑 → ( { 𝐴 } × 𝑌 ) ∈ V ) |
57 |
|
funimaexg |
⊢ ( ( Fun +no ∧ ( { 𝐴 } × 𝑌 ) ∈ V ) → ( +no “ ( { 𝐴 } × 𝑌 ) ) ∈ V ) |
58 |
9 56 57
|
sylancr |
⊢ ( 𝜑 → ( +no “ ( { 𝐴 } × 𝑌 ) ) ∈ V ) |
59 |
|
imassrn |
⊢ ( +no “ ( { 𝐴 } × 𝑌 ) ) ⊆ ran +no |
60 |
59 18
|
sstri |
⊢ ( +no “ ( { 𝐴 } × 𝑌 ) ) ⊆ On |
61 |
60
|
a1i |
⊢ ( 𝜑 → ( +no “ ( { 𝐴 } × 𝑌 ) ) ⊆ On ) |
62 |
58 61
|
elpwd |
⊢ ( 𝜑 → ( +no “ ( { 𝐴 } × 𝑌 ) ) ∈ 𝒫 On ) |
63 |
|
pwuncl |
⊢ ( ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∈ 𝒫 On ∧ ( +no “ ( { 𝐴 } × 𝑌 ) ) ∈ 𝒫 On ) → ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ∈ 𝒫 On ) |
64 |
47 62 63
|
syl2anc |
⊢ ( 𝜑 → ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ∈ 𝒫 On ) |
65 |
2 4
|
cofonr |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝐵 ∃ 𝑠 ∈ 𝑌 𝑞 ⊆ 𝑠 ) |
66 |
|
onss |
⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) |
67 |
2 66
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ On ) |
68 |
67
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → 𝑞 ∈ On ) |
69 |
68
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝑌 ) → 𝑞 ∈ On ) |
70 |
|
onss |
⊢ ( 𝑦 ∈ On → 𝑦 ⊆ On ) |
71 |
70
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ On ) → 𝑦 ⊆ On ) |
72 |
|
sstr |
⊢ ( ( 𝑌 ⊆ 𝑦 ∧ 𝑦 ⊆ On ) → 𝑌 ⊆ On ) |
73 |
72
|
expcom |
⊢ ( 𝑦 ⊆ On → ( 𝑌 ⊆ 𝑦 → 𝑌 ⊆ On ) ) |
74 |
71 73
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ On ) → ( 𝑌 ⊆ 𝑦 → 𝑌 ⊆ On ) ) |
75 |
74
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ On 𝑌 ⊆ 𝑦 → 𝑌 ⊆ On ) ) |
76 |
50 75
|
mpd |
⊢ ( 𝜑 → 𝑌 ⊆ On ) |
77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → 𝑌 ⊆ On ) |
78 |
77
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝑌 ) → 𝑠 ∈ On ) |
79 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝑌 ) → 𝐴 ∈ On ) |
80 |
|
naddss2 |
⊢ ( ( 𝑞 ∈ On ∧ 𝑠 ∈ On ∧ 𝐴 ∈ On ) → ( 𝑞 ⊆ 𝑠 ↔ ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
81 |
69 78 79 80
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝑌 ) → ( 𝑞 ⊆ 𝑠 ↔ ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
82 |
81
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → ( ∃ 𝑠 ∈ 𝑌 𝑞 ⊆ 𝑠 ↔ ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
83 |
82
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑞 ∈ 𝐵 ∃ 𝑠 ∈ 𝑌 𝑞 ⊆ 𝑠 ↔ ∀ 𝑞 ∈ 𝐵 ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
84 |
65 83
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝐵 ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) |
85 |
1
|
snssd |
⊢ ( 𝜑 → { 𝐴 } ⊆ On ) |
86 |
|
xpss12 |
⊢ ( ( { 𝐴 } ⊆ On ∧ 𝑌 ⊆ On ) → ( { 𝐴 } × 𝑌 ) ⊆ ( On × On ) ) |
87 |
85 76 86
|
syl2anc |
⊢ ( 𝜑 → ( { 𝐴 } × 𝑌 ) ⊆ ( On × On ) ) |
88 |
|
sseq2 |
⊢ ( 𝑑 = ( 𝑟 +no 𝑠 ) → ( ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ↔ ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
89 |
88
|
imaeqexov |
⊢ ( ( +no Fn ( On × On ) ∧ ( { 𝐴 } × 𝑌 ) ⊆ ( On × On ) ) → ( ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ↔ ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
90 |
7 87 89
|
sylancr |
⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ↔ ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
91 |
|
oveq1 |
⊢ ( 𝑟 = 𝐴 → ( 𝑟 +no 𝑠 ) = ( 𝐴 +no 𝑠 ) ) |
92 |
91
|
sseq2d |
⊢ ( 𝑟 = 𝐴 → ( ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
93 |
92
|
rexbidv |
⊢ ( 𝑟 = 𝐴 → ( ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
94 |
93
|
rexsng |
⊢ ( 𝐴 ∈ On → ( ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
95 |
1 94
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
96 |
90 95
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ↔ ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
97 |
96
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ↔ ∀ 𝑞 ∈ 𝐵 ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
98 |
84 97
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) |
99 |
|
olc |
⊢ ( ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 → ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
100 |
99
|
ralimi |
⊢ ( ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 → ∀ 𝑞 ∈ 𝐵 ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
101 |
98 100
|
syl |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝐵 ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
102 |
|
rexun |
⊢ ( ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ↔ ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
103 |
102
|
ralbii |
⊢ ( ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ↔ ∀ 𝑞 ∈ 𝐵 ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
104 |
101 103
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) |
105 |
|
xpss12 |
⊢ ( ( { 𝐴 } ⊆ On ∧ 𝐵 ⊆ On ) → ( { 𝐴 } × 𝐵 ) ⊆ ( On × On ) ) |
106 |
85 67 105
|
syl2anc |
⊢ ( 𝜑 → ( { 𝐴 } × 𝐵 ) ⊆ ( On × On ) ) |
107 |
|
sseq1 |
⊢ ( 𝑐 = ( 𝑝 +no 𝑞 ) → ( 𝑐 ⊆ 𝑑 ↔ ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ) ) |
108 |
107
|
rexbidv |
⊢ ( 𝑐 = ( 𝑝 +no 𝑞 ) → ( ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ↔ ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ) ) |
109 |
108
|
imaeqalov |
⊢ ( ( +no Fn ( On × On ) ∧ ( { 𝐴 } × 𝐵 ) ⊆ ( On × On ) ) → ( ∀ 𝑐 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ↔ ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ) ) |
110 |
7 106 109
|
sylancr |
⊢ ( 𝜑 → ( ∀ 𝑐 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ↔ ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ) ) |
111 |
|
oveq1 |
⊢ ( 𝑝 = 𝐴 → ( 𝑝 +no 𝑞 ) = ( 𝐴 +no 𝑞 ) ) |
112 |
111
|
sseq1d |
⊢ ( 𝑝 = 𝐴 → ( ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
113 |
112
|
rexbidv |
⊢ ( 𝑝 = 𝐴 → ( ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
114 |
113
|
ralbidv |
⊢ ( 𝑝 = 𝐴 → ( ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
115 |
114
|
ralsng |
⊢ ( 𝐴 ∈ On → ( ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
116 |
1 115
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
117 |
110 116
|
bitrd |
⊢ ( 𝜑 → ( ∀ 𝑐 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ↔ ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
118 |
104 117
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ) |
119 |
1 3
|
cofonr |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐴 ∃ 𝑟 ∈ 𝑋 𝑝 ⊆ 𝑟 ) |
120 |
|
onss |
⊢ ( 𝐴 ∈ On → 𝐴 ⊆ On ) |
121 |
1 120
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ On ) |
122 |
121
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ On ) |
123 |
122
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝑋 ) → 𝑝 ∈ On ) |
124 |
|
ssintub |
⊢ 𝑋 ⊆ ∩ { 𝑥 ∈ On ∣ 𝑋 ⊆ 𝑥 } |
125 |
3 121
|
eqsstrrd |
⊢ ( 𝜑 → ∩ { 𝑥 ∈ On ∣ 𝑋 ⊆ 𝑥 } ⊆ On ) |
126 |
124 125
|
sstrid |
⊢ ( 𝜑 → 𝑋 ⊆ On ) |
127 |
126
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → 𝑋 ⊆ On ) |
128 |
127
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝑋 ) → 𝑟 ∈ On ) |
129 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝑋 ) → 𝐵 ∈ On ) |
130 |
|
naddss1 |
⊢ ( ( 𝑝 ∈ On ∧ 𝑟 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑝 ⊆ 𝑟 ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
131 |
123 128 129 130
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝑋 ) → ( 𝑝 ⊆ 𝑟 ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
132 |
131
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ( ∃ 𝑟 ∈ 𝑋 𝑝 ⊆ 𝑟 ↔ ∃ 𝑟 ∈ 𝑋 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
133 |
132
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝐴 ∃ 𝑟 ∈ 𝑋 𝑝 ⊆ 𝑟 ↔ ∀ 𝑝 ∈ 𝐴 ∃ 𝑟 ∈ 𝑋 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
134 |
119 133
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐴 ∃ 𝑟 ∈ 𝑋 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) |
135 |
2
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ On ) |
136 |
|
xpss12 |
⊢ ( ( 𝑋 ⊆ On ∧ { 𝐵 } ⊆ On ) → ( 𝑋 × { 𝐵 } ) ⊆ ( On × On ) ) |
137 |
126 135 136
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 × { 𝐵 } ) ⊆ ( On × On ) ) |
138 |
|
sseq2 |
⊢ ( 𝑑 = ( 𝑟 +no 𝑠 ) → ( ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
139 |
138
|
imaeqexov |
⊢ ( ( +no Fn ( On × On ) ∧ ( 𝑋 × { 𝐵 } ) ⊆ ( On × On ) ) → ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ↔ ∃ 𝑟 ∈ 𝑋 ∃ 𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
140 |
7 137 139
|
sylancr |
⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ↔ ∃ 𝑟 ∈ 𝑋 ∃ 𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
141 |
|
oveq2 |
⊢ ( 𝑠 = 𝐵 → ( 𝑟 +no 𝑠 ) = ( 𝑟 +no 𝐵 ) ) |
142 |
141
|
sseq2d |
⊢ ( 𝑠 = 𝐵 → ( ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
143 |
142
|
rexsng |
⊢ ( 𝐵 ∈ On → ( ∃ 𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
144 |
2 143
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
145 |
144
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑋 ∃ 𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑟 ∈ 𝑋 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
146 |
140 145
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ↔ ∃ 𝑟 ∈ 𝑋 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
147 |
146
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝐴 ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ↔ ∀ 𝑝 ∈ 𝐴 ∃ 𝑟 ∈ 𝑋 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
148 |
134 147
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐴 ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) |
149 |
|
orc |
⊢ ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 → ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) ) |
150 |
149
|
ralimi |
⊢ ( ∀ 𝑝 ∈ 𝐴 ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 → ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) ) |
151 |
148 150
|
syl |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) ) |
152 |
|
rexun |
⊢ ( ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ↔ ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) ) |
153 |
152
|
ralbii |
⊢ ( ∀ 𝑝 ∈ 𝐴 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ↔ ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) ) |
154 |
151 153
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐴 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) |
155 |
|
oveq2 |
⊢ ( 𝑞 = 𝐵 → ( 𝑝 +no 𝑞 ) = ( 𝑝 +no 𝐵 ) ) |
156 |
155
|
sseq1d |
⊢ ( 𝑞 = 𝐵 → ( ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) ) |
157 |
156
|
rexbidv |
⊢ ( 𝑞 = 𝐵 → ( ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) ) |
158 |
157
|
ralsng |
⊢ ( 𝐵 ∈ On → ( ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) ) |
159 |
2 158
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) ) |
160 |
159
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∀ 𝑝 ∈ 𝐴 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) ) |
161 |
154 160
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ) |
162 |
|
xpss12 |
⊢ ( ( 𝐴 ⊆ On ∧ { 𝐵 } ⊆ On ) → ( 𝐴 × { 𝐵 } ) ⊆ ( On × On ) ) |
163 |
121 135 162
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 × { 𝐵 } ) ⊆ ( On × On ) ) |
164 |
108
|
imaeqalov |
⊢ ( ( +no Fn ( On × On ) ∧ ( 𝐴 × { 𝐵 } ) ⊆ ( On × On ) ) → ( ∀ 𝑐 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ↔ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ) ) |
165 |
7 163 164
|
sylancr |
⊢ ( 𝜑 → ( ∀ 𝑐 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ↔ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ) ) |
166 |
161 165
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ) |
167 |
|
ralunb |
⊢ ( ∀ 𝑐 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ↔ ( ∀ 𝑐 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ∧ ∀ 𝑐 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ) ) |
168 |
118 166 167
|
sylanbrc |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ) |
169 |
124 3
|
sseqtrrid |
⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) |
170 |
169
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → 𝑝 ∈ 𝐴 ) |
171 |
|
ssid |
⊢ 𝑝 ⊆ 𝑝 |
172 |
|
sseq2 |
⊢ ( 𝑟 = 𝑝 → ( 𝑝 ⊆ 𝑟 ↔ 𝑝 ⊆ 𝑝 ) ) |
173 |
172
|
rspcev |
⊢ ( ( 𝑝 ∈ 𝐴 ∧ 𝑝 ⊆ 𝑝 ) → ∃ 𝑟 ∈ 𝐴 𝑝 ⊆ 𝑟 ) |
174 |
170 171 173
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → ∃ 𝑟 ∈ 𝐴 𝑝 ⊆ 𝑟 ) |
175 |
174
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑋 ∃ 𝑟 ∈ 𝐴 𝑝 ⊆ 𝑟 ) |
176 |
126
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → 𝑝 ∈ On ) |
177 |
176
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝐴 ) → 𝑝 ∈ On ) |
178 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → 𝐴 ⊆ On ) |
179 |
178
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝐴 ) → 𝑟 ∈ On ) |
180 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝐴 ) → 𝐵 ∈ On ) |
181 |
177 179 180 130
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝐴 ) → ( 𝑝 ⊆ 𝑟 ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
182 |
181
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → ( ∃ 𝑟 ∈ 𝐴 𝑝 ⊆ 𝑟 ↔ ∃ 𝑟 ∈ 𝐴 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
183 |
182
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝑋 ∃ 𝑟 ∈ 𝐴 𝑝 ⊆ 𝑟 ↔ ∀ 𝑝 ∈ 𝑋 ∃ 𝑟 ∈ 𝐴 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
184 |
175 183
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑋 ∃ 𝑟 ∈ 𝐴 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) |
185 |
|
sseq2 |
⊢ ( 𝑏 = ( 𝑟 +no 𝑠 ) → ( ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
186 |
185
|
imaeqexov |
⊢ ( ( +no Fn ( On × On ) ∧ ( 𝐴 × { 𝐵 } ) ⊆ ( On × On ) ) → ( ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ↔ ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
187 |
7 163 186
|
sylancr |
⊢ ( 𝜑 → ( ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ↔ ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
188 |
144
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑟 ∈ 𝐴 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
189 |
187 188
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ↔ ∃ 𝑟 ∈ 𝐴 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
190 |
189
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝑋 ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ↔ ∀ 𝑝 ∈ 𝑋 ∃ 𝑟 ∈ 𝐴 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
191 |
184 190
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑋 ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) |
192 |
|
olc |
⊢ ( ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 → ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) |
193 |
192
|
ralimi |
⊢ ( ∀ 𝑝 ∈ 𝑋 ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 → ∀ 𝑝 ∈ 𝑋 ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) |
194 |
191 193
|
syl |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑋 ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) |
195 |
155
|
sseq1d |
⊢ ( 𝑞 = 𝐵 → ( ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) |
196 |
195
|
rexbidv |
⊢ ( 𝑞 = 𝐵 → ( ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) |
197 |
196
|
ralsng |
⊢ ( 𝐵 ∈ On → ( ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) |
198 |
2 197
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) |
199 |
198
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → ( ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) |
200 |
|
rexun |
⊢ ( ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ↔ ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) |
201 |
199 200
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → ( ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) ) |
202 |
201
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝑋 ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∀ 𝑝 ∈ 𝑋 ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) ) |
203 |
194 202
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑋 ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) |
204 |
|
sseq1 |
⊢ ( 𝑎 = ( 𝑝 +no 𝑞 ) → ( 𝑎 ⊆ 𝑏 ↔ ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) ) |
205 |
204
|
rexbidv |
⊢ ( 𝑎 = ( 𝑝 +no 𝑞 ) → ( ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ↔ ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) ) |
206 |
205
|
imaeqalov |
⊢ ( ( +no Fn ( On × On ) ∧ ( 𝑋 × { 𝐵 } ) ⊆ ( On × On ) ) → ( ∀ 𝑎 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ↔ ∀ 𝑝 ∈ 𝑋 ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) ) |
207 |
7 137 206
|
sylancr |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ↔ ∀ 𝑝 ∈ 𝑋 ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) ) |
208 |
203 207
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ) |
209 |
|
ssintub |
⊢ 𝑌 ⊆ ∩ { 𝑦 ∈ On ∣ 𝑌 ⊆ 𝑦 } |
210 |
209 4
|
sseqtrrid |
⊢ ( 𝜑 → 𝑌 ⊆ 𝐵 ) |
211 |
210
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) → 𝑞 ∈ 𝐵 ) |
212 |
|
ssid |
⊢ 𝑞 ⊆ 𝑞 |
213 |
|
sseq2 |
⊢ ( 𝑠 = 𝑞 → ( 𝑞 ⊆ 𝑠 ↔ 𝑞 ⊆ 𝑞 ) ) |
214 |
213
|
rspcev |
⊢ ( ( 𝑞 ∈ 𝐵 ∧ 𝑞 ⊆ 𝑞 ) → ∃ 𝑠 ∈ 𝐵 𝑞 ⊆ 𝑠 ) |
215 |
211 212 214
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) → ∃ 𝑠 ∈ 𝐵 𝑞 ⊆ 𝑠 ) |
216 |
215
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝑌 ∃ 𝑠 ∈ 𝐵 𝑞 ⊆ 𝑠 ) |
217 |
92
|
rexbidv |
⊢ ( 𝑟 = 𝐴 → ( ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
218 |
217
|
rexsng |
⊢ ( 𝐴 ∈ On → ( ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
219 |
1 218
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
220 |
219
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) → ( ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
221 |
|
sseq2 |
⊢ ( 𝑏 = ( 𝑟 +no 𝑠 ) → ( ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
222 |
221
|
imaeqexov |
⊢ ( ( +no Fn ( On × On ) ∧ ( { 𝐴 } × 𝐵 ) ⊆ ( On × On ) ) → ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
223 |
7 106 222
|
sylancr |
⊢ ( 𝜑 → ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
224 |
223
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) → ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
225 |
76
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) → 𝑞 ∈ On ) |
226 |
225
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) ∧ 𝑠 ∈ 𝐵 ) → 𝑞 ∈ On ) |
227 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) → 𝐵 ⊆ On ) |
228 |
227
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) ∧ 𝑠 ∈ 𝐵 ) → 𝑠 ∈ On ) |
229 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) ∧ 𝑠 ∈ 𝐵 ) → 𝐴 ∈ On ) |
230 |
226 228 229 80
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) ∧ 𝑠 ∈ 𝐵 ) → ( 𝑞 ⊆ 𝑠 ↔ ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
231 |
230
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) → ( ∃ 𝑠 ∈ 𝐵 𝑞 ⊆ 𝑠 ↔ ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
232 |
220 224 231
|
3bitr4d |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) → ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑠 ∈ 𝐵 𝑞 ⊆ 𝑠 ) ) |
233 |
232
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ∀ 𝑞 ∈ 𝑌 ∃ 𝑠 ∈ 𝐵 𝑞 ⊆ 𝑠 ) ) |
234 |
216 233
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) |
235 |
|
orc |
⊢ ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 → ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) ) |
236 |
235
|
ralimi |
⊢ ( ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 → ∀ 𝑞 ∈ 𝑌 ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) ) |
237 |
234 236
|
syl |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝑌 ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) ) |
238 |
|
rexun |
⊢ ( ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) ) |
239 |
238
|
ralbii |
⊢ ( ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ∀ 𝑞 ∈ 𝑌 ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) ) |
240 |
237 239
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) |
241 |
111
|
sseq1d |
⊢ ( 𝑝 = 𝐴 → ( ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) ) |
242 |
241
|
rexbidv |
⊢ ( 𝑝 = 𝐴 → ( ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) ) |
243 |
242
|
ralbidv |
⊢ ( 𝑝 = 𝐴 → ( ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) ) |
244 |
243
|
ralsng |
⊢ ( 𝐴 ∈ On → ( ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) ) |
245 |
1 244
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) ) |
246 |
240 245
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) |
247 |
205
|
imaeqalov |
⊢ ( ( +no Fn ( On × On ) ∧ ( { 𝐴 } × 𝑌 ) ⊆ ( On × On ) ) → ( ∀ 𝑎 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ↔ ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) ) |
248 |
7 87 247
|
sylancr |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ↔ ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) ) |
249 |
246 248
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ) |
250 |
|
ralunb |
⊢ ( ∀ 𝑎 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ↔ ( ∀ 𝑎 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ∧ ∀ 𝑎 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ) ) |
251 |
208 249 250
|
sylanbrc |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ) |
252 |
32 64 168 251
|
cofon2 |
⊢ ( 𝜑 → ∩ { 𝑤 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ⊆ 𝑤 } = ∩ { 𝑧 ∈ On ∣ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ⊆ 𝑧 } ) |
253 |
6 252
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 +no 𝐵 ) = ∩ { 𝑧 ∈ On ∣ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ⊆ 𝑧 } ) |