Metamath Proof Explorer


Theorem naddunif

Description: Uniformity theorem for natural addition. If A is the upper bound of X and B is the upper bound of Y , then ( A +no B ) can be expressed in terms of X and Y . (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Hypotheses naddunif.1 ( 𝜑𝐴 ∈ On )
naddunif.2 ( 𝜑𝐵 ∈ On )
naddunif.3 ( 𝜑𝐴 = { 𝑥 ∈ On ∣ 𝑋𝑥 } )
naddunif.4 ( 𝜑𝐵 = { 𝑦 ∈ On ∣ 𝑌𝑦 } )
Assertion naddunif ( 𝜑 → ( 𝐴 +no 𝐵 ) = { 𝑧 ∈ On ∣ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ⊆ 𝑧 } )

Proof

Step Hyp Ref Expression
1 naddunif.1 ( 𝜑𝐴 ∈ On )
2 naddunif.2 ( 𝜑𝐵 ∈ On )
3 naddunif.3 ( 𝜑𝐴 = { 𝑥 ∈ On ∣ 𝑋𝑥 } )
4 naddunif.4 ( 𝜑𝐵 = { 𝑦 ∈ On ∣ 𝑌𝑦 } )
5 naddov3 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no 𝐵 ) = { 𝑤 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ⊆ 𝑤 } )
6 1 2 5 syl2anc ( 𝜑 → ( 𝐴 +no 𝐵 ) = { 𝑤 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ⊆ 𝑤 } )
7 naddfn +no Fn ( On × On )
8 fnfun ( +no Fn ( On × On ) → Fun +no )
9 7 8 ax-mp Fun +no
10 snex { 𝐴 } ∈ V
11 xpexg ( ( { 𝐴 } ∈ V ∧ 𝐵 ∈ On ) → ( { 𝐴 } × 𝐵 ) ∈ V )
12 10 2 11 sylancr ( 𝜑 → ( { 𝐴 } × 𝐵 ) ∈ V )
13 funimaexg ( ( Fun +no ∧ ( { 𝐴 } × 𝐵 ) ∈ V ) → ( +no “ ( { 𝐴 } × 𝐵 ) ) ∈ V )
14 9 12 13 sylancr ( 𝜑 → ( +no “ ( { 𝐴 } × 𝐵 ) ) ∈ V )
15 imassrn ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ ran +no
16 naddf +no : ( On × On ) ⟶ On
17 frn ( +no : ( On × On ) ⟶ On → ran +no ⊆ On )
18 16 17 ax-mp ran +no ⊆ On
19 15 18 sstri ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ On
20 19 a1i ( 𝜑 → ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ On )
21 14 20 elpwd ( 𝜑 → ( +no “ ( { 𝐴 } × 𝐵 ) ) ∈ 𝒫 On )
22 snex { 𝐵 } ∈ V
23 xpexg ( ( 𝐴 ∈ On ∧ { 𝐵 } ∈ V ) → ( 𝐴 × { 𝐵 } ) ∈ V )
24 1 22 23 sylancl ( 𝜑 → ( 𝐴 × { 𝐵 } ) ∈ V )
25 funimaexg ( ( Fun +no ∧ ( 𝐴 × { 𝐵 } ) ∈ V ) → ( +no “ ( 𝐴 × { 𝐵 } ) ) ∈ V )
26 9 24 25 sylancr ( 𝜑 → ( +no “ ( 𝐴 × { 𝐵 } ) ) ∈ V )
27 imassrn ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ ran +no
28 27 18 sstri ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ On
29 28 a1i ( 𝜑 → ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ On )
30 26 29 elpwd ( 𝜑 → ( +no “ ( 𝐴 × { 𝐵 } ) ) ∈ 𝒫 On )
31 pwuncl ( ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∈ 𝒫 On ∧ ( +no “ ( 𝐴 × { 𝐵 } ) ) ∈ 𝒫 On ) → ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ∈ 𝒫 On )
32 21 30 31 syl2anc ( 𝜑 → ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ∈ 𝒫 On )
33 3 1 eqeltrrd ( 𝜑 { 𝑥 ∈ On ∣ 𝑋𝑥 } ∈ On )
34 onintrab2 ( ∃ 𝑥 ∈ On 𝑋𝑥 { 𝑥 ∈ On ∣ 𝑋𝑥 } ∈ On )
35 33 34 sylibr ( 𝜑 → ∃ 𝑥 ∈ On 𝑋𝑥 )
36 vex 𝑥 ∈ V
37 36 ssex ( 𝑋𝑥𝑋 ∈ V )
38 37 rexlimivw ( ∃ 𝑥 ∈ On 𝑋𝑥𝑋 ∈ V )
39 35 38 syl ( 𝜑𝑋 ∈ V )
40 xpexg ( ( 𝑋 ∈ V ∧ { 𝐵 } ∈ V ) → ( 𝑋 × { 𝐵 } ) ∈ V )
41 39 22 40 sylancl ( 𝜑 → ( 𝑋 × { 𝐵 } ) ∈ V )
42 funimaexg ( ( Fun +no ∧ ( 𝑋 × { 𝐵 } ) ∈ V ) → ( +no “ ( 𝑋 × { 𝐵 } ) ) ∈ V )
43 9 41 42 sylancr ( 𝜑 → ( +no “ ( 𝑋 × { 𝐵 } ) ) ∈ V )
44 imassrn ( +no “ ( 𝑋 × { 𝐵 } ) ) ⊆ ran +no
45 44 18 sstri ( +no “ ( 𝑋 × { 𝐵 } ) ) ⊆ On
46 45 a1i ( 𝜑 → ( +no “ ( 𝑋 × { 𝐵 } ) ) ⊆ On )
47 43 46 elpwd ( 𝜑 → ( +no “ ( 𝑋 × { 𝐵 } ) ) ∈ 𝒫 On )
48 4 2 eqeltrrd ( 𝜑 { 𝑦 ∈ On ∣ 𝑌𝑦 } ∈ On )
49 onintrab2 ( ∃ 𝑦 ∈ On 𝑌𝑦 { 𝑦 ∈ On ∣ 𝑌𝑦 } ∈ On )
50 48 49 sylibr ( 𝜑 → ∃ 𝑦 ∈ On 𝑌𝑦 )
51 vex 𝑦 ∈ V
52 51 ssex ( 𝑌𝑦𝑌 ∈ V )
53 52 rexlimivw ( ∃ 𝑦 ∈ On 𝑌𝑦𝑌 ∈ V )
54 50 53 syl ( 𝜑𝑌 ∈ V )
55 xpexg ( ( { 𝐴 } ∈ V ∧ 𝑌 ∈ V ) → ( { 𝐴 } × 𝑌 ) ∈ V )
56 10 54 55 sylancr ( 𝜑 → ( { 𝐴 } × 𝑌 ) ∈ V )
57 funimaexg ( ( Fun +no ∧ ( { 𝐴 } × 𝑌 ) ∈ V ) → ( +no “ ( { 𝐴 } × 𝑌 ) ) ∈ V )
58 9 56 57 sylancr ( 𝜑 → ( +no “ ( { 𝐴 } × 𝑌 ) ) ∈ V )
59 imassrn ( +no “ ( { 𝐴 } × 𝑌 ) ) ⊆ ran +no
60 59 18 sstri ( +no “ ( { 𝐴 } × 𝑌 ) ) ⊆ On
61 60 a1i ( 𝜑 → ( +no “ ( { 𝐴 } × 𝑌 ) ) ⊆ On )
62 58 61 elpwd ( 𝜑 → ( +no “ ( { 𝐴 } × 𝑌 ) ) ∈ 𝒫 On )
63 pwuncl ( ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∈ 𝒫 On ∧ ( +no “ ( { 𝐴 } × 𝑌 ) ) ∈ 𝒫 On ) → ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ∈ 𝒫 On )
64 47 62 63 syl2anc ( 𝜑 → ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ∈ 𝒫 On )
65 2 4 cofonr ( 𝜑 → ∀ 𝑞𝐵𝑠𝑌 𝑞𝑠 )
66 onss ( 𝐵 ∈ On → 𝐵 ⊆ On )
67 2 66 syl ( 𝜑𝐵 ⊆ On )
68 67 sselda ( ( 𝜑𝑞𝐵 ) → 𝑞 ∈ On )
69 68 adantr ( ( ( 𝜑𝑞𝐵 ) ∧ 𝑠𝑌 ) → 𝑞 ∈ On )
70 onss ( 𝑦 ∈ On → 𝑦 ⊆ On )
71 70 adantl ( ( 𝜑𝑦 ∈ On ) → 𝑦 ⊆ On )
72 sstr ( ( 𝑌𝑦𝑦 ⊆ On ) → 𝑌 ⊆ On )
73 72 expcom ( 𝑦 ⊆ On → ( 𝑌𝑦𝑌 ⊆ On ) )
74 71 73 syl ( ( 𝜑𝑦 ∈ On ) → ( 𝑌𝑦𝑌 ⊆ On ) )
75 74 rexlimdva ( 𝜑 → ( ∃ 𝑦 ∈ On 𝑌𝑦𝑌 ⊆ On ) )
76 50 75 mpd ( 𝜑𝑌 ⊆ On )
77 76 adantr ( ( 𝜑𝑞𝐵 ) → 𝑌 ⊆ On )
78 77 sselda ( ( ( 𝜑𝑞𝐵 ) ∧ 𝑠𝑌 ) → 𝑠 ∈ On )
79 1 ad2antrr ( ( ( 𝜑𝑞𝐵 ) ∧ 𝑠𝑌 ) → 𝐴 ∈ On )
80 naddss2 ( ( 𝑞 ∈ On ∧ 𝑠 ∈ On ∧ 𝐴 ∈ On ) → ( 𝑞𝑠 ↔ ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) )
81 69 78 79 80 syl3anc ( ( ( 𝜑𝑞𝐵 ) ∧ 𝑠𝑌 ) → ( 𝑞𝑠 ↔ ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) )
82 81 rexbidva ( ( 𝜑𝑞𝐵 ) → ( ∃ 𝑠𝑌 𝑞𝑠 ↔ ∃ 𝑠𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) )
83 82 ralbidva ( 𝜑 → ( ∀ 𝑞𝐵𝑠𝑌 𝑞𝑠 ↔ ∀ 𝑞𝐵𝑠𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) )
84 65 83 mpbid ( 𝜑 → ∀ 𝑞𝐵𝑠𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) )
85 1 snssd ( 𝜑 → { 𝐴 } ⊆ On )
86 xpss12 ( ( { 𝐴 } ⊆ On ∧ 𝑌 ⊆ On ) → ( { 𝐴 } × 𝑌 ) ⊆ ( On × On ) )
87 85 76 86 syl2anc ( 𝜑 → ( { 𝐴 } × 𝑌 ) ⊆ ( On × On ) )
88 sseq2 ( 𝑑 = ( 𝑟 +no 𝑠 ) → ( ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ↔ ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ) )
89 88 imaeqexov ( ( +no Fn ( On × On ) ∧ ( { 𝐴 } × 𝑌 ) ⊆ ( On × On ) ) → ( ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ↔ ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ) )
90 7 87 89 sylancr ( 𝜑 → ( ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ↔ ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ) )
91 oveq1 ( 𝑟 = 𝐴 → ( 𝑟 +no 𝑠 ) = ( 𝐴 +no 𝑠 ) )
92 91 sseq2d ( 𝑟 = 𝐴 → ( ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) )
93 92 rexbidv ( 𝑟 = 𝐴 → ( ∃ 𝑠𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑠𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) )
94 93 rexsng ( 𝐴 ∈ On → ( ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑠𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) )
95 1 94 syl ( 𝜑 → ( ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑠𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) )
96 90 95 bitrd ( 𝜑 → ( ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ↔ ∃ 𝑠𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) )
97 96 ralbidv ( 𝜑 → ( ∀ 𝑞𝐵𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ↔ ∀ 𝑞𝐵𝑠𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) )
98 84 97 mpbird ( 𝜑 → ∀ 𝑞𝐵𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 )
99 olc ( ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 → ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) )
100 99 ralimi ( ∀ 𝑞𝐵𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 → ∀ 𝑞𝐵 ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) )
101 98 100 syl ( 𝜑 → ∀ 𝑞𝐵 ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) )
102 rexun ( ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ↔ ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) )
103 102 ralbii ( ∀ 𝑞𝐵𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ↔ ∀ 𝑞𝐵 ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) )
104 101 103 sylibr ( 𝜑 → ∀ 𝑞𝐵𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 )
105 xpss12 ( ( { 𝐴 } ⊆ On ∧ 𝐵 ⊆ On ) → ( { 𝐴 } × 𝐵 ) ⊆ ( On × On ) )
106 85 67 105 syl2anc ( 𝜑 → ( { 𝐴 } × 𝐵 ) ⊆ ( On × On ) )
107 sseq1 ( 𝑐 = ( 𝑝 +no 𝑞 ) → ( 𝑐𝑑 ↔ ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ) )
108 107 rexbidv ( 𝑐 = ( 𝑝 +no 𝑞 ) → ( ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐𝑑 ↔ ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ) )
109 108 imaeqalov ( ( +no Fn ( On × On ) ∧ ( { 𝐴 } × 𝐵 ) ⊆ ( On × On ) ) → ( ∀ 𝑐 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐𝑑 ↔ ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞𝐵𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ) )
110 7 106 109 sylancr ( 𝜑 → ( ∀ 𝑐 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐𝑑 ↔ ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞𝐵𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ) )
111 oveq1 ( 𝑝 = 𝐴 → ( 𝑝 +no 𝑞 ) = ( 𝐴 +no 𝑞 ) )
112 111 sseq1d ( 𝑝 = 𝐴 → ( ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) )
113 112 rexbidv ( 𝑝 = 𝐴 → ( ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) )
114 113 ralbidv ( 𝑝 = 𝐴 → ( ∀ 𝑞𝐵𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∀ 𝑞𝐵𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) )
115 114 ralsng ( 𝐴 ∈ On → ( ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞𝐵𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∀ 𝑞𝐵𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) )
116 1 115 syl ( 𝜑 → ( ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞𝐵𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∀ 𝑞𝐵𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) )
117 110 116 bitrd ( 𝜑 → ( ∀ 𝑐 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐𝑑 ↔ ∀ 𝑞𝐵𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) )
118 104 117 mpbird ( 𝜑 → ∀ 𝑐 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐𝑑 )
119 1 3 cofonr ( 𝜑 → ∀ 𝑝𝐴𝑟𝑋 𝑝𝑟 )
120 onss ( 𝐴 ∈ On → 𝐴 ⊆ On )
121 1 120 syl ( 𝜑𝐴 ⊆ On )
122 121 sselda ( ( 𝜑𝑝𝐴 ) → 𝑝 ∈ On )
123 122 adantr ( ( ( 𝜑𝑝𝐴 ) ∧ 𝑟𝑋 ) → 𝑝 ∈ On )
124 ssintub 𝑋 { 𝑥 ∈ On ∣ 𝑋𝑥 }
125 3 121 eqsstrrd ( 𝜑 { 𝑥 ∈ On ∣ 𝑋𝑥 } ⊆ On )
126 124 125 sstrid ( 𝜑𝑋 ⊆ On )
127 126 adantr ( ( 𝜑𝑝𝐴 ) → 𝑋 ⊆ On )
128 127 sselda ( ( ( 𝜑𝑝𝐴 ) ∧ 𝑟𝑋 ) → 𝑟 ∈ On )
129 2 ad2antrr ( ( ( 𝜑𝑝𝐴 ) ∧ 𝑟𝑋 ) → 𝐵 ∈ On )
130 naddss1 ( ( 𝑝 ∈ On ∧ 𝑟 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑝𝑟 ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) )
131 123 128 129 130 syl3anc ( ( ( 𝜑𝑝𝐴 ) ∧ 𝑟𝑋 ) → ( 𝑝𝑟 ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) )
132 131 rexbidva ( ( 𝜑𝑝𝐴 ) → ( ∃ 𝑟𝑋 𝑝𝑟 ↔ ∃ 𝑟𝑋 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) )
133 132 ralbidva ( 𝜑 → ( ∀ 𝑝𝐴𝑟𝑋 𝑝𝑟 ↔ ∀ 𝑝𝐴𝑟𝑋 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) )
134 119 133 mpbid ( 𝜑 → ∀ 𝑝𝐴𝑟𝑋 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) )
135 2 snssd ( 𝜑 → { 𝐵 } ⊆ On )
136 xpss12 ( ( 𝑋 ⊆ On ∧ { 𝐵 } ⊆ On ) → ( 𝑋 × { 𝐵 } ) ⊆ ( On × On ) )
137 126 135 136 syl2anc ( 𝜑 → ( 𝑋 × { 𝐵 } ) ⊆ ( On × On ) )
138 sseq2 ( 𝑑 = ( 𝑟 +no 𝑠 ) → ( ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ) )
139 138 imaeqexov ( ( +no Fn ( On × On ) ∧ ( 𝑋 × { 𝐵 } ) ⊆ ( On × On ) ) → ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ↔ ∃ 𝑟𝑋𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ) )
140 7 137 139 sylancr ( 𝜑 → ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ↔ ∃ 𝑟𝑋𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ) )
141 oveq2 ( 𝑠 = 𝐵 → ( 𝑟 +no 𝑠 ) = ( 𝑟 +no 𝐵 ) )
142 141 sseq2d ( 𝑠 = 𝐵 → ( ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) )
143 142 rexsng ( 𝐵 ∈ On → ( ∃ 𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) )
144 2 143 syl ( 𝜑 → ( ∃ 𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) )
145 144 rexbidv ( 𝜑 → ( ∃ 𝑟𝑋𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑟𝑋 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) )
146 140 145 bitrd ( 𝜑 → ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ↔ ∃ 𝑟𝑋 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) )
147 146 ralbidv ( 𝜑 → ( ∀ 𝑝𝐴𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ↔ ∀ 𝑝𝐴𝑟𝑋 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) )
148 134 147 mpbird ( 𝜑 → ∀ 𝑝𝐴𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 )
149 orc ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 → ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) )
150 149 ralimi ( ∀ 𝑝𝐴𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 → ∀ 𝑝𝐴 ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) )
151 148 150 syl ( 𝜑 → ∀ 𝑝𝐴 ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) )
152 rexun ( ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ↔ ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) )
153 152 ralbii ( ∀ 𝑝𝐴𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ↔ ∀ 𝑝𝐴 ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) )
154 151 153 sylibr ( 𝜑 → ∀ 𝑝𝐴𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 )
155 oveq2 ( 𝑞 = 𝐵 → ( 𝑝 +no 𝑞 ) = ( 𝑝 +no 𝐵 ) )
156 155 sseq1d ( 𝑞 = 𝐵 → ( ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) )
157 156 rexbidv ( 𝑞 = 𝐵 → ( ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) )
158 157 ralsng ( 𝐵 ∈ On → ( ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) )
159 2 158 syl ( 𝜑 → ( ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) )
160 159 ralbidv ( 𝜑 → ( ∀ 𝑝𝐴𝑞 ∈ { 𝐵 } ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∀ 𝑝𝐴𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) )
161 154 160 mpbird ( 𝜑 → ∀ 𝑝𝐴𝑞 ∈ { 𝐵 } ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 )
162 xpss12 ( ( 𝐴 ⊆ On ∧ { 𝐵 } ⊆ On ) → ( 𝐴 × { 𝐵 } ) ⊆ ( On × On ) )
163 121 135 162 syl2anc ( 𝜑 → ( 𝐴 × { 𝐵 } ) ⊆ ( On × On ) )
164 108 imaeqalov ( ( +no Fn ( On × On ) ∧ ( 𝐴 × { 𝐵 } ) ⊆ ( On × On ) ) → ( ∀ 𝑐 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐𝑑 ↔ ∀ 𝑝𝐴𝑞 ∈ { 𝐵 } ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ) )
165 7 163 164 sylancr ( 𝜑 → ( ∀ 𝑐 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐𝑑 ↔ ∀ 𝑝𝐴𝑞 ∈ { 𝐵 } ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ) )
166 161 165 mpbird ( 𝜑 → ∀ 𝑐 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐𝑑 )
167 ralunb ( ∀ 𝑐 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐𝑑 ↔ ( ∀ 𝑐 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐𝑑 ∧ ∀ 𝑐 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐𝑑 ) )
168 118 166 167 sylanbrc ( 𝜑 → ∀ 𝑐 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐𝑑 )
169 124 3 sseqtrrid ( 𝜑𝑋𝐴 )
170 169 sselda ( ( 𝜑𝑝𝑋 ) → 𝑝𝐴 )
171 ssid 𝑝𝑝
172 sseq2 ( 𝑟 = 𝑝 → ( 𝑝𝑟𝑝𝑝 ) )
173 172 rspcev ( ( 𝑝𝐴𝑝𝑝 ) → ∃ 𝑟𝐴 𝑝𝑟 )
174 170 171 173 sylancl ( ( 𝜑𝑝𝑋 ) → ∃ 𝑟𝐴 𝑝𝑟 )
175 174 ralrimiva ( 𝜑 → ∀ 𝑝𝑋𝑟𝐴 𝑝𝑟 )
176 126 sselda ( ( 𝜑𝑝𝑋 ) → 𝑝 ∈ On )
177 176 adantr ( ( ( 𝜑𝑝𝑋 ) ∧ 𝑟𝐴 ) → 𝑝 ∈ On )
178 121 adantr ( ( 𝜑𝑝𝑋 ) → 𝐴 ⊆ On )
179 178 sselda ( ( ( 𝜑𝑝𝑋 ) ∧ 𝑟𝐴 ) → 𝑟 ∈ On )
180 2 ad2antrr ( ( ( 𝜑𝑝𝑋 ) ∧ 𝑟𝐴 ) → 𝐵 ∈ On )
181 177 179 180 130 syl3anc ( ( ( 𝜑𝑝𝑋 ) ∧ 𝑟𝐴 ) → ( 𝑝𝑟 ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) )
182 181 rexbidva ( ( 𝜑𝑝𝑋 ) → ( ∃ 𝑟𝐴 𝑝𝑟 ↔ ∃ 𝑟𝐴 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) )
183 182 ralbidva ( 𝜑 → ( ∀ 𝑝𝑋𝑟𝐴 𝑝𝑟 ↔ ∀ 𝑝𝑋𝑟𝐴 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) )
184 175 183 mpbid ( 𝜑 → ∀ 𝑝𝑋𝑟𝐴 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) )
185 sseq2 ( 𝑏 = ( 𝑟 +no 𝑠 ) → ( ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ) )
186 185 imaeqexov ( ( +no Fn ( On × On ) ∧ ( 𝐴 × { 𝐵 } ) ⊆ ( On × On ) ) → ( ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ↔ ∃ 𝑟𝐴𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ) )
187 7 163 186 sylancr ( 𝜑 → ( ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ↔ ∃ 𝑟𝐴𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ) )
188 144 rexbidv ( 𝜑 → ( ∃ 𝑟𝐴𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑟𝐴 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) )
189 187 188 bitrd ( 𝜑 → ( ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ↔ ∃ 𝑟𝐴 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) )
190 189 ralbidv ( 𝜑 → ( ∀ 𝑝𝑋𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ↔ ∀ 𝑝𝑋𝑟𝐴 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) )
191 184 190 mpbird ( 𝜑 → ∀ 𝑝𝑋𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 )
192 olc ( ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 → ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) )
193 192 ralimi ( ∀ 𝑝𝑋𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 → ∀ 𝑝𝑋 ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) )
194 191 193 syl ( 𝜑 → ∀ 𝑝𝑋 ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) )
195 155 sseq1d ( 𝑞 = 𝐵 → ( ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) )
196 195 rexbidv ( 𝑞 = 𝐵 → ( ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) )
197 196 ralsng ( 𝐵 ∈ On → ( ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) )
198 2 197 syl ( 𝜑 → ( ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) )
199 198 adantr ( ( 𝜑𝑝𝑋 ) → ( ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) )
200 rexun ( ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ↔ ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) )
201 199 200 bitrdi ( ( 𝜑𝑝𝑋 ) → ( ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) )
202 201 ralbidva ( 𝜑 → ( ∀ 𝑝𝑋𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∀ 𝑝𝑋 ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) )
203 194 202 mpbird ( 𝜑 → ∀ 𝑝𝑋𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 )
204 sseq1 ( 𝑎 = ( 𝑝 +no 𝑞 ) → ( 𝑎𝑏 ↔ ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) )
205 204 rexbidv ( 𝑎 = ( 𝑝 +no 𝑞 ) → ( ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎𝑏 ↔ ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) )
206 205 imaeqalov ( ( +no Fn ( On × On ) ∧ ( 𝑋 × { 𝐵 } ) ⊆ ( On × On ) ) → ( ∀ 𝑎 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎𝑏 ↔ ∀ 𝑝𝑋𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) )
207 7 137 206 sylancr ( 𝜑 → ( ∀ 𝑎 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎𝑏 ↔ ∀ 𝑝𝑋𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) )
208 203 207 mpbird ( 𝜑 → ∀ 𝑎 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎𝑏 )
209 ssintub 𝑌 { 𝑦 ∈ On ∣ 𝑌𝑦 }
210 209 4 sseqtrrid ( 𝜑𝑌𝐵 )
211 210 sselda ( ( 𝜑𝑞𝑌 ) → 𝑞𝐵 )
212 ssid 𝑞𝑞
213 sseq2 ( 𝑠 = 𝑞 → ( 𝑞𝑠𝑞𝑞 ) )
214 213 rspcev ( ( 𝑞𝐵𝑞𝑞 ) → ∃ 𝑠𝐵 𝑞𝑠 )
215 211 212 214 sylancl ( ( 𝜑𝑞𝑌 ) → ∃ 𝑠𝐵 𝑞𝑠 )
216 215 ralrimiva ( 𝜑 → ∀ 𝑞𝑌𝑠𝐵 𝑞𝑠 )
217 92 rexbidv ( 𝑟 = 𝐴 → ( ∃ 𝑠𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑠𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) )
218 217 rexsng ( 𝐴 ∈ On → ( ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑠𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) )
219 1 218 syl ( 𝜑 → ( ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑠𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) )
220 219 adantr ( ( 𝜑𝑞𝑌 ) → ( ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑠𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) )
221 sseq2 ( 𝑏 = ( 𝑟 +no 𝑠 ) → ( ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ) )
222 221 imaeqexov ( ( +no Fn ( On × On ) ∧ ( { 𝐴 } × 𝐵 ) ⊆ ( On × On ) ) → ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ) )
223 7 106 222 sylancr ( 𝜑 → ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ) )
224 223 adantr ( ( 𝜑𝑞𝑌 ) → ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ) )
225 76 sselda ( ( 𝜑𝑞𝑌 ) → 𝑞 ∈ On )
226 225 adantr ( ( ( 𝜑𝑞𝑌 ) ∧ 𝑠𝐵 ) → 𝑞 ∈ On )
227 67 adantr ( ( 𝜑𝑞𝑌 ) → 𝐵 ⊆ On )
228 227 sselda ( ( ( 𝜑𝑞𝑌 ) ∧ 𝑠𝐵 ) → 𝑠 ∈ On )
229 1 ad2antrr ( ( ( 𝜑𝑞𝑌 ) ∧ 𝑠𝐵 ) → 𝐴 ∈ On )
230 226 228 229 80 syl3anc ( ( ( 𝜑𝑞𝑌 ) ∧ 𝑠𝐵 ) → ( 𝑞𝑠 ↔ ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) )
231 230 rexbidva ( ( 𝜑𝑞𝑌 ) → ( ∃ 𝑠𝐵 𝑞𝑠 ↔ ∃ 𝑠𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) )
232 220 224 231 3bitr4d ( ( 𝜑𝑞𝑌 ) → ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑠𝐵 𝑞𝑠 ) )
233 232 ralbidva ( 𝜑 → ( ∀ 𝑞𝑌𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ∀ 𝑞𝑌𝑠𝐵 𝑞𝑠 ) )
234 216 233 mpbird ( 𝜑 → ∀ 𝑞𝑌𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 )
235 orc ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 → ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) )
236 235 ralimi ( ∀ 𝑞𝑌𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 → ∀ 𝑞𝑌 ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) )
237 234 236 syl ( 𝜑 → ∀ 𝑞𝑌 ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) )
238 rexun ( ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) )
239 238 ralbii ( ∀ 𝑞𝑌𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ∀ 𝑞𝑌 ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) )
240 237 239 sylibr ( 𝜑 → ∀ 𝑞𝑌𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 )
241 111 sseq1d ( 𝑝 = 𝐴 → ( ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) )
242 241 rexbidv ( 𝑝 = 𝐴 → ( ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) )
243 242 ralbidv ( 𝑝 = 𝐴 → ( ∀ 𝑞𝑌𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∀ 𝑞𝑌𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) )
244 243 ralsng ( 𝐴 ∈ On → ( ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞𝑌𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∀ 𝑞𝑌𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) )
245 1 244 syl ( 𝜑 → ( ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞𝑌𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∀ 𝑞𝑌𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) )
246 240 245 mpbird ( 𝜑 → ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞𝑌𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 )
247 205 imaeqalov ( ( +no Fn ( On × On ) ∧ ( { 𝐴 } × 𝑌 ) ⊆ ( On × On ) ) → ( ∀ 𝑎 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎𝑏 ↔ ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞𝑌𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) )
248 7 87 247 sylancr ( 𝜑 → ( ∀ 𝑎 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎𝑏 ↔ ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞𝑌𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) )
249 246 248 mpbird ( 𝜑 → ∀ 𝑎 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎𝑏 )
250 ralunb ( ∀ 𝑎 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎𝑏 ↔ ( ∀ 𝑎 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎𝑏 ∧ ∀ 𝑎 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎𝑏 ) )
251 208 249 250 sylanbrc ( 𝜑 → ∀ 𝑎 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎𝑏 )
252 32 64 168 251 cofon2 ( 𝜑 { 𝑤 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ⊆ 𝑤 } = { 𝑧 ∈ On ∣ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ⊆ 𝑧 } )
253 6 252 eqtrd ( 𝜑 → ( 𝐴 +no 𝐵 ) = { 𝑧 ∈ On ∣ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ⊆ 𝑧 } )