Metamath Proof Explorer


Theorem naddword1

Description: Weak-ordering principle for natural addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion naddword1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐴 +no 𝐵 ) )

Proof

Step Hyp Ref Expression
1 naddrid ( 𝐴 ∈ On → ( 𝐴 +no ∅ ) = 𝐴 )
2 1 adantr ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no ∅ ) = 𝐴 )
3 0ss ∅ ⊆ 𝐵
4 0elon ∅ ∈ On
5 naddss2 ( ( ∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ⊆ 𝐵 ↔ ( 𝐴 +no ∅ ) ⊆ ( 𝐴 +no 𝐵 ) ) )
6 4 5 mp3an1 ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ⊆ 𝐵 ↔ ( 𝐴 +no ∅ ) ⊆ ( 𝐴 +no 𝐵 ) ) )
7 6 ancoms ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ⊆ 𝐵 ↔ ( 𝐴 +no ∅ ) ⊆ ( 𝐴 +no 𝐵 ) ) )
8 3 7 mpbii ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no ∅ ) ⊆ ( 𝐴 +no 𝐵 ) )
9 2 8 eqsstrrd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐴 +no 𝐵 ) )