Description: Weak-ordering principle for natural addition. (Contributed by Scott Fenton, 15-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | naddword2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐵 +no 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naddword1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐴 +no 𝐵 ) ) | |
2 | naddcom | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no 𝐵 ) = ( 𝐵 +no 𝐴 ) ) | |
3 | 1 2 | sseqtrd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐵 +no 𝐴 ) ) |