Metamath Proof Explorer


Theorem naddword2

Description: Weak-ordering principle for natural addition. (Contributed by Scott Fenton, 15-Feb-2025)

Ref Expression
Assertion naddword2 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐵 +no 𝐴 ) )

Proof

Step Hyp Ref Expression
1 naddword1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐴 +no 𝐵 ) )
2 naddcom ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no 𝐵 ) = ( 𝐵 +no 𝐴 ) )
3 1 2 sseqtrd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐵 +no 𝐴 ) )