Step |
Hyp |
Ref |
Expression |
1 |
|
con3 |
⊢ ( ( 𝜑 → 𝜓 ) → ( ¬ 𝜓 → ¬ 𝜑 ) ) |
2 |
1
|
orim1d |
⊢ ( ( 𝜑 → 𝜓 ) → ( ( ¬ 𝜓 ∨ ¬ 𝜒 ) → ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) ) |
3 |
|
pm3.13 |
⊢ ( ¬ ( 𝜓 ∧ 𝜒 ) → ( ¬ 𝜓 ∨ ¬ 𝜒 ) ) |
4 |
|
pm3.14 |
⊢ ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) → ¬ ( 𝜑 ∧ 𝜒 ) ) |
5 |
3 4
|
imim12i |
⊢ ( ( ( ¬ 𝜓 ∨ ¬ 𝜒 ) → ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) → ( ¬ ( 𝜓 ∧ 𝜒 ) → ¬ ( 𝜑 ∧ 𝜒 ) ) ) |
6 |
|
df-nan |
⊢ ( ( 𝜓 ⊼ 𝜒 ) ↔ ¬ ( 𝜓 ∧ 𝜒 ) ) |
7 |
|
df-nan |
⊢ ( ( 𝜑 ⊼ 𝜒 ) ↔ ¬ ( 𝜑 ∧ 𝜒 ) ) |
8 |
5 6 7
|
3imtr4g |
⊢ ( ( ( ¬ 𝜓 ∨ ¬ 𝜒 ) → ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) → ( ( 𝜓 ⊼ 𝜒 ) → ( 𝜑 ⊼ 𝜒 ) ) ) |
9 |
2 8
|
syl |
⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 ⊼ 𝜒 ) → ( 𝜑 ⊼ 𝜒 ) ) ) |