Metamath Proof Explorer


Theorem naim1

Description: Constructor theorem for -/\ . (Contributed by Anthony Hart, 1-Sep-2011)

Ref Expression
Assertion naim1 ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 con3 ( ( 𝜑𝜓 ) → ( ¬ 𝜓 → ¬ 𝜑 ) )
2 1 orim1d ( ( 𝜑𝜓 ) → ( ( ¬ 𝜓 ∨ ¬ 𝜒 ) → ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) )
3 pm3.13 ( ¬ ( 𝜓𝜒 ) → ( ¬ 𝜓 ∨ ¬ 𝜒 ) )
4 pm3.14 ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) → ¬ ( 𝜑𝜒 ) )
5 3 4 imim12i ( ( ( ¬ 𝜓 ∨ ¬ 𝜒 ) → ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) → ( ¬ ( 𝜓𝜒 ) → ¬ ( 𝜑𝜒 ) ) )
6 df-nan ( ( 𝜓𝜒 ) ↔ ¬ ( 𝜓𝜒 ) )
7 df-nan ( ( 𝜑𝜒 ) ↔ ¬ ( 𝜑𝜒 ) )
8 5 6 7 3imtr4g ( ( ( ¬ 𝜓 ∨ ¬ 𝜒 ) → ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) )
9 2 8 syl ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) )