Step |
Hyp |
Ref |
Expression |
1 |
|
alexn |
⊢ ( ∀ 𝑥 ∃ 𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ¬ ∃ 𝑥 ∀ 𝑦 𝑦 ∈ 𝑥 ) |
2 |
|
ax-sep |
⊢ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧 ) ) |
3 |
|
elequ1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝑦 ↔ 𝑦 ∈ 𝑦 ) ) |
4 |
|
elequ1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
5 |
|
elequ1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) |
6 |
|
elequ2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑦 ) ) |
7 |
5 6
|
bitrd |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝑧 ↔ 𝑦 ∈ 𝑦 ) ) |
8 |
7
|
notbid |
⊢ ( 𝑧 = 𝑦 → ( ¬ 𝑧 ∈ 𝑧 ↔ ¬ 𝑦 ∈ 𝑦 ) ) |
9 |
4 8
|
anbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧 ) ↔ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑦 ) ) ) |
10 |
3 9
|
bibi12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ∈ 𝑦 ↔ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧 ) ) ↔ ( 𝑦 ∈ 𝑦 ↔ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑦 ) ) ) ) |
11 |
10
|
spvv |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧 ) ) → ( 𝑦 ∈ 𝑦 ↔ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑦 ) ) ) |
12 |
|
pclem6 |
⊢ ( ( 𝑦 ∈ 𝑦 ↔ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑦 ) ) → ¬ 𝑦 ∈ 𝑥 ) |
13 |
11 12
|
syl |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧 ) ) → ¬ 𝑦 ∈ 𝑥 ) |
14 |
2 13
|
eximii |
⊢ ∃ 𝑦 ¬ 𝑦 ∈ 𝑥 |
15 |
1 14
|
mpgbi |
⊢ ¬ ∃ 𝑥 ∀ 𝑦 𝑦 ∈ 𝑥 |