Metamath Proof Explorer


Theorem nalset

Description: No set contains all sets. Theorem 41 of Suppes p. 30. (Contributed by NM, 23-Aug-1993) Remove use of ax-12 and ax-13 . (Revised by BJ, 31-May-2019)

Ref Expression
Assertion nalset ¬ ∃ 𝑥𝑦 𝑦𝑥

Proof

Step Hyp Ref Expression
1 alexn ( ∀ 𝑥𝑦 ¬ 𝑦𝑥 ↔ ¬ ∃ 𝑥𝑦 𝑦𝑥 )
2 ax-sep 𝑦𝑧 ( 𝑧𝑦 ↔ ( 𝑧𝑥 ∧ ¬ 𝑧𝑧 ) )
3 elequ1 ( 𝑧 = 𝑦 → ( 𝑧𝑦𝑦𝑦 ) )
4 elequ1 ( 𝑧 = 𝑦 → ( 𝑧𝑥𝑦𝑥 ) )
5 elequ1 ( 𝑧 = 𝑦 → ( 𝑧𝑧𝑦𝑧 ) )
6 elequ2 ( 𝑧 = 𝑦 → ( 𝑦𝑧𝑦𝑦 ) )
7 5 6 bitrd ( 𝑧 = 𝑦 → ( 𝑧𝑧𝑦𝑦 ) )
8 7 notbid ( 𝑧 = 𝑦 → ( ¬ 𝑧𝑧 ↔ ¬ 𝑦𝑦 ) )
9 4 8 anbi12d ( 𝑧 = 𝑦 → ( ( 𝑧𝑥 ∧ ¬ 𝑧𝑧 ) ↔ ( 𝑦𝑥 ∧ ¬ 𝑦𝑦 ) ) )
10 3 9 bibi12d ( 𝑧 = 𝑦 → ( ( 𝑧𝑦 ↔ ( 𝑧𝑥 ∧ ¬ 𝑧𝑧 ) ) ↔ ( 𝑦𝑦 ↔ ( 𝑦𝑥 ∧ ¬ 𝑦𝑦 ) ) ) )
11 10 spvv ( ∀ 𝑧 ( 𝑧𝑦 ↔ ( 𝑧𝑥 ∧ ¬ 𝑧𝑧 ) ) → ( 𝑦𝑦 ↔ ( 𝑦𝑥 ∧ ¬ 𝑦𝑦 ) ) )
12 pclem6 ( ( 𝑦𝑦 ↔ ( 𝑦𝑥 ∧ ¬ 𝑦𝑦 ) ) → ¬ 𝑦𝑥 )
13 11 12 syl ( ∀ 𝑧 ( 𝑧𝑦 ↔ ( 𝑧𝑥 ∧ ¬ 𝑧𝑧 ) ) → ¬ 𝑦𝑥 )
14 2 13 eximii 𝑦 ¬ 𝑦𝑥
15 1 14 mpgbi ¬ ∃ 𝑥𝑦 𝑦𝑥