| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bicom1 | ⊢ ( ( 𝜑  ↔  𝜒 )  →  ( 𝜒  ↔  𝜑 ) ) | 
						
							| 2 |  | nanbi2 | ⊢ ( ( 𝜑  ↔  𝜒 )  →  ( ( 𝜓  ⊼  𝜑 )  ↔  ( 𝜓  ⊼  𝜒 ) ) ) | 
						
							| 3 | 1 2 | nanbi12d | ⊢ ( ( 𝜑  ↔  𝜒 )  →  ( ( 𝜒  ⊼  ( 𝜓  ⊼  𝜑 ) )  ↔  ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) ) ) ) | 
						
							| 4 |  | nannan | ⊢ ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  ↔  ( 𝜑  →  ( 𝜓  ∧  𝜒 ) ) ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝜓  ∧  𝜒 )  →  𝜒 ) | 
						
							| 6 | 5 | imim2i | ⊢ ( ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  ( 𝜑  →  𝜒 ) ) | 
						
							| 7 | 4 6 | sylbi | ⊢ ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  →  ( 𝜑  →  𝜒 ) ) | 
						
							| 8 |  | nannan | ⊢ ( ( 𝜒  ⊼  ( 𝜓  ⊼  𝜑 ) )  ↔  ( 𝜒  →  ( 𝜓  ∧  𝜑 ) ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝜓  ∧  𝜑 )  →  𝜑 ) | 
						
							| 10 | 9 | imim2i | ⊢ ( ( 𝜒  →  ( 𝜓  ∧  𝜑 ) )  →  ( 𝜒  →  𝜑 ) ) | 
						
							| 11 | 8 10 | sylbi | ⊢ ( ( 𝜒  ⊼  ( 𝜓  ⊼  𝜑 ) )  →  ( 𝜒  →  𝜑 ) ) | 
						
							| 12 | 7 11 | impbid21d | ⊢ ( ( 𝜒  ⊼  ( 𝜓  ⊼  𝜑 ) )  →  ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  →  ( 𝜑  ↔  𝜒 ) ) ) | 
						
							| 13 |  | nanan | ⊢ ( ( 𝜑  ∧  ( 𝜓  ⊼  𝜒 ) )  ↔  ¬  ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) ) ) | 
						
							| 14 |  | simpl | ⊢ ( ( 𝜑  ∧  ( 𝜓  ⊼  𝜒 ) )  →  𝜑 ) | 
						
							| 15 | 13 14 | sylbir | ⊢ ( ¬  ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  →  𝜑 ) | 
						
							| 16 |  | nanan | ⊢ ( ( 𝜒  ∧  ( 𝜓  ⊼  𝜑 ) )  ↔  ¬  ( 𝜒  ⊼  ( 𝜓  ⊼  𝜑 ) ) ) | 
						
							| 17 |  | simpl | ⊢ ( ( 𝜒  ∧  ( 𝜓  ⊼  𝜑 ) )  →  𝜒 ) | 
						
							| 18 | 16 17 | sylbir | ⊢ ( ¬  ( 𝜒  ⊼  ( 𝜓  ⊼  𝜑 ) )  →  𝜒 ) | 
						
							| 19 |  | pm5.1im | ⊢ ( 𝜑  →  ( 𝜒  →  ( 𝜑  ↔  𝜒 ) ) ) | 
						
							| 20 | 15 18 19 | syl2imc | ⊢ ( ¬  ( 𝜒  ⊼  ( 𝜓  ⊼  𝜑 ) )  →  ( ¬  ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  →  ( 𝜑  ↔  𝜒 ) ) ) | 
						
							| 21 | 12 20 | bija | ⊢ ( ( ( 𝜒  ⊼  ( 𝜓  ⊼  𝜑 ) )  ↔  ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) ) )  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 22 | 3 21 | impbii | ⊢ ( ( 𝜑  ↔  𝜒 )  ↔  ( ( 𝜒  ⊼  ( 𝜓  ⊼  𝜑 ) )  ↔  ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) ) ) ) | 
						
							| 23 |  | nancom | ⊢ ( ( 𝜓  ⊼  𝜑 )  ↔  ( 𝜑  ⊼  𝜓 ) ) | 
						
							| 24 | 23 | nanbi2i | ⊢ ( ( 𝜒  ⊼  ( 𝜓  ⊼  𝜑 ) )  ↔  ( 𝜒  ⊼  ( 𝜑  ⊼  𝜓 ) ) ) | 
						
							| 25 |  | nancom | ⊢ ( ( 𝜒  ⊼  ( 𝜑  ⊼  𝜓 ) )  ↔  ( ( 𝜑  ⊼  𝜓 )  ⊼  𝜒 ) ) | 
						
							| 26 | 24 25 | bitri | ⊢ ( ( 𝜒  ⊼  ( 𝜓  ⊼  𝜑 ) )  ↔  ( ( 𝜑  ⊼  𝜓 )  ⊼  𝜒 ) ) | 
						
							| 27 | 26 | bibi1i | ⊢ ( ( ( 𝜒  ⊼  ( 𝜓  ⊼  𝜑 ) )  ↔  ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) ) )  ↔  ( ( ( 𝜑  ⊼  𝜓 )  ⊼  𝜒 )  ↔  ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) ) ) ) | 
						
							| 28 | 22 27 | bitri | ⊢ ( ( 𝜑  ↔  𝜒 )  ↔  ( ( ( 𝜑  ⊼  𝜓 )  ⊼  𝜒 )  ↔  ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) ) ) ) |