Step |
Hyp |
Ref |
Expression |
1 |
|
dfbi3 |
⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ) |
2 |
|
df-or |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ↔ ( ¬ ( 𝜑 ∧ 𝜓 ) → ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ) |
3 |
|
df-nan |
⊢ ( ( 𝜑 ⊼ 𝜓 ) ↔ ¬ ( 𝜑 ∧ 𝜓 ) ) |
4 |
3
|
bicomi |
⊢ ( ¬ ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ⊼ 𝜓 ) ) |
5 |
|
nannot |
⊢ ( ¬ 𝜑 ↔ ( 𝜑 ⊼ 𝜑 ) ) |
6 |
|
nannot |
⊢ ( ¬ 𝜓 ↔ ( 𝜓 ⊼ 𝜓 ) ) |
7 |
5 6
|
anbi12i |
⊢ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) ↔ ( ( 𝜑 ⊼ 𝜑 ) ∧ ( 𝜓 ⊼ 𝜓 ) ) ) |
8 |
4 7
|
imbi12i |
⊢ ( ( ¬ ( 𝜑 ∧ 𝜓 ) → ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ↔ ( ( 𝜑 ⊼ 𝜓 ) → ( ( 𝜑 ⊼ 𝜑 ) ∧ ( 𝜓 ⊼ 𝜓 ) ) ) ) |
9 |
1 2 8
|
3bitri |
⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ⊼ 𝜓 ) → ( ( 𝜑 ⊼ 𝜑 ) ∧ ( 𝜓 ⊼ 𝜓 ) ) ) ) |
10 |
|
nannan |
⊢ ( ( ( 𝜑 ⊼ 𝜓 ) ⊼ ( ( 𝜑 ⊼ 𝜑 ) ⊼ ( 𝜓 ⊼ 𝜓 ) ) ) ↔ ( ( 𝜑 ⊼ 𝜓 ) → ( ( 𝜑 ⊼ 𝜑 ) ∧ ( 𝜓 ⊼ 𝜓 ) ) ) ) |
11 |
9 10
|
bitr4i |
⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ⊼ 𝜓 ) ⊼ ( ( 𝜑 ⊼ 𝜑 ) ⊼ ( 𝜓 ⊼ 𝜓 ) ) ) ) |