Metamath Proof Explorer


Theorem nanbi

Description: Biconditional in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007) (Proof shortened by Wolf Lammen, 27-Jun-2020)

Ref Expression
Assertion nanbi ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ⊼ ( ( 𝜑𝜑 ) ⊼ ( 𝜓𝜓 ) ) ) )

Proof

Step Hyp Ref Expression
1 dfbi3 ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) )
2 df-or ( ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ↔ ( ¬ ( 𝜑𝜓 ) → ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) )
3 df-nan ( ( 𝜑𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
4 3 bicomi ( ¬ ( 𝜑𝜓 ) ↔ ( 𝜑𝜓 ) )
5 nannot ( ¬ 𝜑 ↔ ( 𝜑𝜑 ) )
6 nannot ( ¬ 𝜓 ↔ ( 𝜓𝜓 ) )
7 5 6 anbi12i ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) ↔ ( ( 𝜑𝜑 ) ∧ ( 𝜓𝜓 ) ) )
8 4 7 imbi12i ( ( ¬ ( 𝜑𝜓 ) → ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ↔ ( ( 𝜑𝜓 ) → ( ( 𝜑𝜑 ) ∧ ( 𝜓𝜓 ) ) ) )
9 1 2 8 3bitri ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) → ( ( 𝜑𝜑 ) ∧ ( 𝜓𝜓 ) ) ) )
10 nannan ( ( ( 𝜑𝜓 ) ⊼ ( ( 𝜑𝜑 ) ⊼ ( 𝜓𝜓 ) ) ) ↔ ( ( 𝜑𝜓 ) → ( ( 𝜑𝜑 ) ∧ ( 𝜓𝜓 ) ) ) )
11 9 10 bitr4i ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ⊼ ( ( 𝜑𝜑 ) ⊼ ( 𝜓𝜓 ) ) ) )