Metamath Proof Explorer


Theorem nanbi12

Description: Join two logical equivalences with anti-conjunction. (Contributed by SF, 2-Jan-2018)

Ref Expression
Assertion nanbi12 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 nanbi1 ( ( 𝜑𝜓 ) → ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜒 ) ) )
2 nanbi2 ( ( 𝜒𝜃 ) → ( ( 𝜓𝜒 ) ↔ ( 𝜓𝜃 ) ) )
3 1 2 sylan9bb ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜃 ) ) )