Metamath Proof Explorer
		
		
		
		Description:  Join two logical equivalences with anti-conjunction.  (Contributed by SF, 2-Jan-2018)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | nanbii.1 | ⊢ ( 𝜑  ↔  𝜓 ) | 
					
						|  |  | nanbi12i.2 | ⊢ ( 𝜒  ↔  𝜃 ) | 
				
					|  | Assertion | nanbi12i | ⊢  ( ( 𝜑  ⊼  𝜒 )  ↔  ( 𝜓  ⊼  𝜃 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nanbii.1 | ⊢ ( 𝜑  ↔  𝜓 ) | 
						
							| 2 |  | nanbi12i.2 | ⊢ ( 𝜒  ↔  𝜃 ) | 
						
							| 3 |  | nanbi12 | ⊢ ( ( ( 𝜑  ↔  𝜓 )  ∧  ( 𝜒  ↔  𝜃 ) )  →  ( ( 𝜑  ⊼  𝜒 )  ↔  ( 𝜓  ⊼  𝜃 ) ) ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ ( ( 𝜑  ⊼  𝜒 )  ↔  ( 𝜓  ⊼  𝜃 ) ) |