Metamath Proof Explorer


Theorem nanbi12i

Description: Join two logical equivalences with anti-conjunction. (Contributed by SF, 2-Jan-2018)

Ref Expression
Hypotheses nanbii.1 ( 𝜑𝜓 )
nanbi12i.2 ( 𝜒𝜃 )
Assertion nanbi12i ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 nanbii.1 ( 𝜑𝜓 )
2 nanbi12i.2 ( 𝜒𝜃 )
3 nanbi12 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜃 ) ) )
4 1 2 3 mp2an ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜃 ) )