Metamath Proof Explorer
Description: Join two logical equivalences with anti-conjunction. (Contributed by SF, 2-Jan-2018)
|
|
Ref |
Expression |
|
Hypotheses |
nanbii.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
|
|
nanbi12i.2 |
⊢ ( 𝜒 ↔ 𝜃 ) |
|
Assertion |
nanbi12i |
⊢ ( ( 𝜑 ⊼ 𝜒 ) ↔ ( 𝜓 ⊼ 𝜃 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nanbii.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
2 |
|
nanbi12i.2 |
⊢ ( 𝜒 ↔ 𝜃 ) |
3 |
|
nanbi12 |
⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ) → ( ( 𝜑 ⊼ 𝜒 ) ↔ ( 𝜓 ⊼ 𝜃 ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( ( 𝜑 ⊼ 𝜒 ) ↔ ( 𝜓 ⊼ 𝜃 ) ) |