Metamath Proof Explorer


Theorem nanbi2

Description: Introduce a left anti-conjunct to both sides of a logical equivalence. (Contributed by Anthony Hart, 1-Sep-2011) (Proof shortened by SF, 2-Jan-2018)

Ref Expression
Assertion nanbi2 ( ( 𝜑𝜓 ) → ( ( 𝜒𝜑 ) ↔ ( 𝜒𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 nanbi1 ( ( 𝜑𝜓 ) → ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜒 ) ) )
2 nancom ( ( 𝜒𝜑 ) ↔ ( 𝜑𝜒 ) )
3 nancom ( ( 𝜒𝜓 ) ↔ ( 𝜓𝜒 ) )
4 1 2 3 3bitr4g ( ( 𝜑𝜓 ) → ( ( 𝜒𝜑 ) ↔ ( 𝜒𝜓 ) ) )