Description: Introduce a left anti-conjunct to both sides of a logical equivalence. (Contributed by Anthony Hart, 1-Sep-2011) (Proof shortened by SF, 2-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | nanbi2 | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜒 ⊼ 𝜑 ) ↔ ( 𝜒 ⊼ 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nanbi1 | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜑 ⊼ 𝜒 ) ↔ ( 𝜓 ⊼ 𝜒 ) ) ) | |
2 | nancom | ⊢ ( ( 𝜒 ⊼ 𝜑 ) ↔ ( 𝜑 ⊼ 𝜒 ) ) | |
3 | nancom | ⊢ ( ( 𝜒 ⊼ 𝜓 ) ↔ ( 𝜓 ⊼ 𝜒 ) ) | |
4 | 1 2 3 | 3bitr4g | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜒 ⊼ 𝜑 ) ↔ ( 𝜒 ⊼ 𝜓 ) ) ) |