Description: Implication in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nanim | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜓 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nannan | ⊢ ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜓 ) ) ↔ ( 𝜑 → ( 𝜓 ∧ 𝜓 ) ) ) | |
| 2 | anidmdbi | ⊢ ( ( 𝜑 → ( 𝜓 ∧ 𝜓 ) ) ↔ ( 𝜑 → 𝜓 ) ) | |
| 3 | 1 2 | bitr2i | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜓 ) ) ) |