Metamath Proof Explorer


Theorem nanor

Description: Alternative denial in terms of disjunction and negation. This explains the name "alternative denial". (Contributed by BJ, 19-Oct-2022)

Ref Expression
Assertion nanor ( ( 𝜑𝜓 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 df-nan ( ( 𝜑𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
2 ianor ( ¬ ( 𝜑𝜓 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ) )
3 1 2 bitri ( ( 𝜑𝜓 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ) )