Metamath Proof Explorer
		
		
		
		Description:  Alternative denial in terms of disjunction and negation.  This explains
     the name "alternative denial".  (Contributed by BJ, 19-Oct-2022)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | nanor | ⊢  ( ( 𝜑  ⊼  𝜓 )  ↔  ( ¬  𝜑  ∨  ¬  𝜓 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-nan | ⊢ ( ( 𝜑  ⊼  𝜓 )  ↔  ¬  ( 𝜑  ∧  𝜓 ) ) | 
						
							| 2 |  | ianor | ⊢ ( ¬  ( 𝜑  ∧  𝜓 )  ↔  ( ¬  𝜑  ∨  ¬  𝜓 ) ) | 
						
							| 3 | 1 2 | bitri | ⊢ ( ( 𝜑  ⊼  𝜓 )  ↔  ( ¬  𝜑  ∨  ¬  𝜓 ) ) |