| Step | Hyp | Ref | Expression | 
						
							| 1 |  | natrcl.1 | ⊢ 𝑁  =  ( 𝐶  Nat  𝐷 ) | 
						
							| 2 |  | natixp.2 | ⊢ ( 𝜑  →  𝐴  ∈  ( 〈 𝐹 ,  𝐺 〉 𝑁 〈 𝐾 ,  𝐿 〉 ) ) | 
						
							| 3 |  | natixp.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | natixp.j | ⊢ 𝐽  =  ( Hom  ‘ 𝐷 ) | 
						
							| 5 |  | natcl.1 | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 | 1 2 3 4 | natixp | ⊢ ( 𝜑  →  𝐴  ∈  X 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐾 ‘ 𝑥 )  =  ( 𝐾 ‘ 𝑋 ) ) | 
						
							| 9 | 7 8 | oveq12d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐾 ‘ 𝑋 ) ) ) | 
						
							| 10 | 9 | fvixp | ⊢ ( ( 𝐴  ∈  X 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐴 ‘ 𝑋 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐾 ‘ 𝑋 ) ) ) | 
						
							| 11 | 6 5 10 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑋 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐾 ‘ 𝑋 ) ) ) |