Step |
Hyp |
Ref |
Expression |
1 |
|
natrcl.1 |
⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) |
2 |
|
natixp.2 |
⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) |
3 |
|
natixp.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
natixp.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
5 |
|
natcl.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
1 2 3 4
|
natixp |
⊢ ( 𝜑 → 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐾 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑋 ) ) |
9 |
7 8
|
oveq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐾 ‘ 𝑋 ) ) ) |
10 |
9
|
fvixp |
⊢ ( ( 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐴 ‘ 𝑋 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐾 ‘ 𝑋 ) ) ) |
11 |
6 5 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐾 ‘ 𝑋 ) ) ) |