Step |
Hyp |
Ref |
Expression |
1 |
|
natrcl.1 |
⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
3 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
4 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
5 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
6 |
1 2 3 4 5
|
natfval |
⊢ 𝑁 = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
7 |
|
ovex |
⊢ ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∈ V |
8 |
7
|
rgenw |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∈ V |
9 |
|
ixpexg |
⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∈ V → X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∈ V ) |
10 |
8 9
|
ax-mp |
⊢ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∈ V |
11 |
10
|
rabex |
⊢ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ V |
12 |
11
|
csbex |
⊢ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ V |
13 |
12
|
csbex |
⊢ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ V |
14 |
6 13
|
fnmpoi |
⊢ 𝑁 Fn ( ( 𝐶 Func 𝐷 ) × ( 𝐶 Func 𝐷 ) ) |