Metamath Proof Explorer


Theorem natfn

Description: A natural transformation is a function on the objects of C . (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses natrcl.1 𝑁 = ( 𝐶 Nat 𝐷 )
natixp.2 ( 𝜑𝐴 ∈ ( ⟨ 𝐹 , 𝐺𝑁𝐾 , 𝐿 ⟩ ) )
natixp.b 𝐵 = ( Base ‘ 𝐶 )
Assertion natfn ( 𝜑𝐴 Fn 𝐵 )

Proof

Step Hyp Ref Expression
1 natrcl.1 𝑁 = ( 𝐶 Nat 𝐷 )
2 natixp.2 ( 𝜑𝐴 ∈ ( ⟨ 𝐹 , 𝐺𝑁𝐾 , 𝐿 ⟩ ) )
3 natixp.b 𝐵 = ( Base ‘ 𝐶 )
4 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
5 1 2 3 4 natixp ( 𝜑𝐴X 𝑥𝐵 ( ( 𝐹𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐾𝑥 ) ) )
6 ixpfn ( 𝐴X 𝑥𝐵 ( ( 𝐹𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐾𝑥 ) ) → 𝐴 Fn 𝐵 )
7 5 6 syl ( 𝜑𝐴 Fn 𝐵 )