Step |
Hyp |
Ref |
Expression |
1 |
|
natfval.1 |
⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) |
2 |
|
natfval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
natfval.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
4 |
|
natfval.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
5 |
|
natfval.o |
⊢ · = ( comp ‘ 𝐷 ) |
6 |
|
oveq12 |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( 𝑡 Func 𝑢 ) = ( 𝐶 Func 𝐷 ) ) |
7 |
|
simpl |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → 𝑡 = 𝐶 ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( Base ‘ 𝑡 ) = ( Base ‘ 𝐶 ) ) |
9 |
8 2
|
eqtr4di |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( Base ‘ 𝑡 ) = 𝐵 ) |
10 |
9
|
ixpeq1d |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ) |
11 |
|
simpr |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → 𝑢 = 𝐷 ) |
12 |
11
|
fveq2d |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( Hom ‘ 𝑢 ) = ( Hom ‘ 𝐷 ) ) |
13 |
12 4
|
eqtr4di |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( Hom ‘ 𝑢 ) = 𝐽 ) |
14 |
13
|
oveqd |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) = ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ) |
15 |
14
|
ixpeq2dv |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ) |
16 |
10 15
|
eqtrd |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ) |
17 |
7
|
fveq2d |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( Hom ‘ 𝑡 ) = ( Hom ‘ 𝐶 ) ) |
18 |
17 3
|
eqtr4di |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( Hom ‘ 𝑡 ) = 𝐻 ) |
19 |
18
|
oveqd |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
20 |
11
|
fveq2d |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( comp ‘ 𝑢 ) = ( comp ‘ 𝐷 ) ) |
21 |
20 5
|
eqtr4di |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( comp ‘ 𝑢 ) = · ) |
22 |
21
|
oveqd |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) = ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ) |
23 |
22
|
oveqd |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) ) |
24 |
21
|
oveqd |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) = ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ) |
25 |
24
|
oveqd |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) |
26 |
23 25
|
eqeq12d |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
27 |
19 26
|
raleqbidv |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
28 |
9 27
|
raleqbidv |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
29 |
9 28
|
raleqbidv |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
30 |
16 29
|
rabeqbidv |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
31 |
30
|
csbeq2dv |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
32 |
31
|
csbeq2dv |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
33 |
6 6 32
|
mpoeq123dv |
⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( 𝑓 ∈ ( 𝑡 Func 𝑢 ) , 𝑔 ∈ ( 𝑡 Func 𝑢 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) ) |
34 |
|
df-nat |
⊢ Nat = ( 𝑡 ∈ Cat , 𝑢 ∈ Cat ↦ ( 𝑓 ∈ ( 𝑡 Func 𝑢 ) , 𝑔 ∈ ( 𝑡 Func 𝑢 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) ) |
35 |
|
ovex |
⊢ ( 𝐶 Func 𝐷 ) ∈ V |
36 |
35 35
|
mpoex |
⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) ∈ V |
37 |
33 34 36
|
ovmpoa |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝐶 Nat 𝐷 ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) ) |
38 |
34
|
mpondm0 |
⊢ ( ¬ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝐶 Nat 𝐷 ) = ∅ ) |
39 |
|
funcrcl |
⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
40 |
39
|
con3i |
⊢ ( ¬ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ¬ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) |
41 |
40
|
eq0rdv |
⊢ ( ¬ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝐶 Func 𝐷 ) = ∅ ) |
42 |
41
|
olcd |
⊢ ( ¬ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( ( 𝐶 Func 𝐷 ) = ∅ ∨ ( 𝐶 Func 𝐷 ) = ∅ ) ) |
43 |
|
0mpo0 |
⊢ ( ( ( 𝐶 Func 𝐷 ) = ∅ ∨ ( 𝐶 Func 𝐷 ) = ∅ ) → ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) = ∅ ) |
44 |
42 43
|
syl |
⊢ ( ¬ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) = ∅ ) |
45 |
38 44
|
eqtr4d |
⊢ ( ¬ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝐶 Nat 𝐷 ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) ) |
46 |
37 45
|
pm2.61i |
⊢ ( 𝐶 Nat 𝐷 ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
47 |
1 46
|
eqtri |
⊢ 𝑁 = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |