Step |
Hyp |
Ref |
Expression |
1 |
|
natrcl.1 |
⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) |
2 |
|
natixp.2 |
⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) |
3 |
|
natixp.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
nati.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
5 |
|
nati.o |
⊢ · = ( comp ‘ 𝐷 ) |
6 |
|
nati.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
nati.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
8 |
|
nati.r |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) |
9 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
10 |
1
|
natrcl |
⊢ ( 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) → ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ∧ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐷 ) ) ) |
11 |
2 10
|
syl |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ∧ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐷 ) ) ) |
12 |
11
|
simpld |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
13 |
|
df-br |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
14 |
12 13
|
sylibr |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
15 |
11
|
simprd |
⊢ ( 𝜑 → 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
16 |
|
df-br |
⊢ ( 𝐾 ( 𝐶 Func 𝐷 ) 𝐿 ↔ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
17 |
15 16
|
sylibr |
⊢ ( 𝜑 → 𝐾 ( 𝐶 Func 𝐷 ) 𝐿 ) |
18 |
1 3 4 9 5 14 17
|
isnat |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ↔ ( 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐾 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑓 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) ) |
19 |
2 18
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐾 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑓 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) |
20 |
19
|
simprd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑓 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) |
21 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑌 ∈ 𝐵 ) |
22 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) |
23 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → 𝑥 = 𝑋 ) |
24 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → 𝑦 = 𝑌 ) |
25 |
23 24
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) |
26 |
22 25
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → 𝑅 ∈ ( 𝑥 𝐻 𝑦 ) ) |
27 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → 𝑥 = 𝑋 ) |
28 |
27
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
29 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → 𝑦 = 𝑌 ) |
30 |
29
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑌 ) ) |
31 |
28 30
|
opeq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 = 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ) |
32 |
29
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( 𝐾 ‘ 𝑦 ) = ( 𝐾 ‘ 𝑌 ) ) |
33 |
31 32
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) = ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ) |
34 |
29
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( 𝐴 ‘ 𝑦 ) = ( 𝐴 ‘ 𝑌 ) ) |
35 |
27 29
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( 𝑥 𝐺 𝑦 ) = ( 𝑋 𝐺 𝑌 ) ) |
36 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → 𝑓 = 𝑅 ) |
37 |
35 36
|
fveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) |
38 |
33 34 37
|
oveq123d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) = ( ( 𝐴 ‘ 𝑌 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ) |
39 |
27
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( 𝐾 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑋 ) ) |
40 |
28 39
|
opeq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 = 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐾 ‘ 𝑋 ) 〉 ) |
41 |
40 32
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) = ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐾 ‘ 𝑋 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ) |
42 |
27 29
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( 𝑥 𝐿 𝑦 ) = ( 𝑋 𝐿 𝑌 ) ) |
43 |
42 36
|
fveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑓 ) = ( ( 𝑋 𝐿 𝑌 ) ‘ 𝑅 ) ) |
44 |
27
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑋 ) ) |
45 |
41 43 44
|
oveq123d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑓 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) = ( ( ( 𝑋 𝐿 𝑌 ) ‘ 𝑅 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐾 ‘ 𝑋 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( 𝐴 ‘ 𝑋 ) ) ) |
46 |
38 45
|
eqeq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑓 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ↔ ( ( 𝐴 ‘ 𝑌 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( ( 𝑋 𝐿 𝑌 ) ‘ 𝑅 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐾 ‘ 𝑋 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( 𝐴 ‘ 𝑋 ) ) ) ) |
47 |
26 46
|
rspcdv |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑓 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) → ( ( 𝐴 ‘ 𝑌 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( ( 𝑋 𝐿 𝑌 ) ‘ 𝑅 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐾 ‘ 𝑋 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( 𝐴 ‘ 𝑋 ) ) ) ) |
48 |
21 47
|
rspcimdv |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑓 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) → ( ( 𝐴 ‘ 𝑌 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( ( 𝑋 𝐿 𝑌 ) ‘ 𝑅 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐾 ‘ 𝑋 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( 𝐴 ‘ 𝑋 ) ) ) ) |
49 |
6 48
|
rspcimdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑓 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) → ( ( 𝐴 ‘ 𝑌 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( ( 𝑋 𝐿 𝑌 ) ‘ 𝑅 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐾 ‘ 𝑋 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( 𝐴 ‘ 𝑋 ) ) ) ) |
50 |
20 49
|
mpd |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑌 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( ( 𝑋 𝐿 𝑌 ) ‘ 𝑅 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐾 ‘ 𝑋 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( 𝐴 ‘ 𝑋 ) ) ) |