Metamath Proof Explorer


Theorem natixp

Description: A natural transformation is a function from the objects of C to homomorphisms from F ( x ) to G ( x ) . (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses natrcl.1 𝑁 = ( 𝐶 Nat 𝐷 )
natixp.2 ( 𝜑𝐴 ∈ ( ⟨ 𝐹 , 𝐺𝑁𝐾 , 𝐿 ⟩ ) )
natixp.b 𝐵 = ( Base ‘ 𝐶 )
natixp.j 𝐽 = ( Hom ‘ 𝐷 )
Assertion natixp ( 𝜑𝐴X 𝑥𝐵 ( ( 𝐹𝑥 ) 𝐽 ( 𝐾𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 natrcl.1 𝑁 = ( 𝐶 Nat 𝐷 )
2 natixp.2 ( 𝜑𝐴 ∈ ( ⟨ 𝐹 , 𝐺𝑁𝐾 , 𝐿 ⟩ ) )
3 natixp.b 𝐵 = ( Base ‘ 𝐶 )
4 natixp.j 𝐽 = ( Hom ‘ 𝐷 )
5 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
6 eqid ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 )
7 1 natrcl ( 𝐴 ∈ ( ⟨ 𝐹 , 𝐺𝑁𝐾 , 𝐿 ⟩ ) → ( ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐶 Func 𝐷 ) ∧ ⟨ 𝐾 , 𝐿 ⟩ ∈ ( 𝐶 Func 𝐷 ) ) )
8 2 7 syl ( 𝜑 → ( ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐶 Func 𝐷 ) ∧ ⟨ 𝐾 , 𝐿 ⟩ ∈ ( 𝐶 Func 𝐷 ) ) )
9 8 simpld ( 𝜑 → ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐶 Func 𝐷 ) )
10 df-br ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐶 Func 𝐷 ) )
11 9 10 sylibr ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
12 8 simprd ( 𝜑 → ⟨ 𝐾 , 𝐿 ⟩ ∈ ( 𝐶 Func 𝐷 ) )
13 df-br ( 𝐾 ( 𝐶 Func 𝐷 ) 𝐿 ↔ ⟨ 𝐾 , 𝐿 ⟩ ∈ ( 𝐶 Func 𝐷 ) )
14 12 13 sylibr ( 𝜑𝐾 ( 𝐶 Func 𝐷 ) 𝐿 )
15 1 3 5 4 6 11 14 isnat ( 𝜑 → ( 𝐴 ∈ ( ⟨ 𝐹 , 𝐺𝑁𝐾 , 𝐿 ⟩ ) ↔ ( 𝐴X 𝑥𝐵 ( ( 𝐹𝑥 ) 𝐽 ( 𝐾𝑥 ) ) ∧ ∀ 𝑥𝐵𝑦𝐵𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝐴𝑦 ) ( ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝐾𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑧 ) ( ⟨ ( 𝐹𝑥 ) , ( 𝐾𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝐾𝑦 ) ) ( 𝐴𝑥 ) ) ) ) )
16 2 15 mpbid ( 𝜑 → ( 𝐴X 𝑥𝐵 ( ( 𝐹𝑥 ) 𝐽 ( 𝐾𝑥 ) ) ∧ ∀ 𝑥𝐵𝑦𝐵𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝐴𝑦 ) ( ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝐾𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑧 ) ( ⟨ ( 𝐹𝑥 ) , ( 𝐾𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝐾𝑦 ) ) ( 𝐴𝑥 ) ) ) )
17 16 simpld ( 𝜑𝐴X 𝑥𝐵 ( ( 𝐹𝑥 ) 𝐽 ( 𝐾𝑥 ) ) )