| Step | Hyp | Ref | Expression | 
						
							| 1 |  | natrcl.1 | ⊢ 𝑁  =  ( 𝐶  Nat  𝐷 ) | 
						
							| 2 |  | natixp.2 | ⊢ ( 𝜑  →  𝐴  ∈  ( 〈 𝐹 ,  𝐺 〉 𝑁 〈 𝐾 ,  𝐿 〉 ) ) | 
						
							| 3 |  | natixp.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | natixp.j | ⊢ 𝐽  =  ( Hom  ‘ 𝐷 ) | 
						
							| 5 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 6 |  | eqid | ⊢ ( comp ‘ 𝐷 )  =  ( comp ‘ 𝐷 ) | 
						
							| 7 | 1 | natrcl | ⊢ ( 𝐴  ∈  ( 〈 𝐹 ,  𝐺 〉 𝑁 〈 𝐾 ,  𝐿 〉 )  →  ( 〈 𝐹 ,  𝐺 〉  ∈  ( 𝐶  Func  𝐷 )  ∧  〈 𝐾 ,  𝐿 〉  ∈  ( 𝐶  Func  𝐷 ) ) ) | 
						
							| 8 | 2 7 | syl | ⊢ ( 𝜑  →  ( 〈 𝐹 ,  𝐺 〉  ∈  ( 𝐶  Func  𝐷 )  ∧  〈 𝐾 ,  𝐿 〉  ∈  ( 𝐶  Func  𝐷 ) ) ) | 
						
							| 9 | 8 | simpld | ⊢ ( 𝜑  →  〈 𝐹 ,  𝐺 〉  ∈  ( 𝐶  Func  𝐷 ) ) | 
						
							| 10 |  | df-br | ⊢ ( 𝐹 ( 𝐶  Func  𝐷 ) 𝐺  ↔  〈 𝐹 ,  𝐺 〉  ∈  ( 𝐶  Func  𝐷 ) ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( 𝜑  →  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 ) | 
						
							| 12 | 8 | simprd | ⊢ ( 𝜑  →  〈 𝐾 ,  𝐿 〉  ∈  ( 𝐶  Func  𝐷 ) ) | 
						
							| 13 |  | df-br | ⊢ ( 𝐾 ( 𝐶  Func  𝐷 ) 𝐿  ↔  〈 𝐾 ,  𝐿 〉  ∈  ( 𝐶  Func  𝐷 ) ) | 
						
							| 14 | 12 13 | sylibr | ⊢ ( 𝜑  →  𝐾 ( 𝐶  Func  𝐷 ) 𝐿 ) | 
						
							| 15 | 1 3 5 4 6 11 14 | isnat | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( 〈 𝐹 ,  𝐺 〉 𝑁 〈 𝐾 ,  𝐿 〉 )  ↔  ( 𝐴  ∈  X 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑧 ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) ) | 
						
							| 16 | 2 15 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  ∈  X 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑧 ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) | 
						
							| 17 | 16 | simpld | ⊢ ( 𝜑  →  𝐴  ∈  X 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) |