Step |
Hyp |
Ref |
Expression |
1 |
|
natrcl.1 |
⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) |
2 |
|
natixp.2 |
⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) |
3 |
|
natixp.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
natixp.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
5 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
6 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
7 |
1
|
natrcl |
⊢ ( 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) → ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ∧ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐷 ) ) ) |
8 |
2 7
|
syl |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ∧ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐷 ) ) ) |
9 |
8
|
simpld |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
10 |
|
df-br |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
11 |
9 10
|
sylibr |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
12 |
8
|
simprd |
⊢ ( 𝜑 → 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
13 |
|
df-br |
⊢ ( 𝐾 ( 𝐶 Func 𝐷 ) 𝐿 ↔ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
14 |
12 13
|
sylibr |
⊢ ( 𝜑 → 𝐾 ( 𝐶 Func 𝐷 ) 𝐿 ) |
15 |
1 3 5 4 6 11 14
|
isnat |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ↔ ( 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) ) |
16 |
2 15
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) |
17 |
16
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) |