Step |
Hyp |
Ref |
Expression |
1 |
|
fucpropd.1 |
⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
2 |
|
fucpropd.2 |
⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) |
3 |
|
fucpropd.3 |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
4 |
|
fucpropd.4 |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
5 |
|
fucpropd.a |
⊢ ( 𝜑 → 𝐴 ∈ Cat ) |
6 |
|
fucpropd.b |
⊢ ( 𝜑 → 𝐵 ∈ Cat ) |
7 |
|
fucpropd.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
8 |
|
fucpropd.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
9 |
1 2 3 4 5 6 7 8
|
funcpropd |
⊢ ( 𝜑 → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 Func 𝐶 ) ) → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) ) |
11 |
|
nfv |
⊢ Ⅎ 𝑟 ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) |
12 |
|
nfcsb1v |
⊢ Ⅎ 𝑟 ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } |
13 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) → Ⅎ 𝑟 ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
14 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( 1st ‘ 𝑓 ) ∈ V ) |
15 |
|
nfv |
⊢ Ⅎ 𝑠 ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) |
16 |
|
nfcsb1v |
⊢ Ⅎ 𝑠 ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } |
17 |
16
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) → Ⅎ 𝑠 ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
18 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) → ( 1st ‘ 𝑔 ) ∈ V ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
20 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
21 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
22 |
3
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
24 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → 𝑟 = ( 1st ‘ 𝑓 ) ) |
25 |
|
relfunc |
⊢ Rel ( 𝐴 Func 𝐶 ) |
26 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) |
27 |
26
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → 𝑓 ∈ ( 𝐴 Func 𝐶 ) ) |
28 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝐴 Func 𝐶 ) ∧ 𝑓 ∈ ( 𝐴 Func 𝐶 ) ) → ( 1st ‘ 𝑓 ) ( 𝐴 Func 𝐶 ) ( 2nd ‘ 𝑓 ) ) |
29 |
25 27 28
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → ( 1st ‘ 𝑓 ) ( 𝐴 Func 𝐶 ) ( 2nd ‘ 𝑓 ) ) |
30 |
24 29
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → 𝑟 ( 𝐴 Func 𝐶 ) ( 2nd ‘ 𝑓 ) ) |
31 |
23 19 30
|
funcf1 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → 𝑟 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) |
32 |
31
|
ffvelrnda |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑟 ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) ) |
33 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → 𝑠 = ( 1st ‘ 𝑔 ) ) |
34 |
26
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) |
35 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) → ( 1st ‘ 𝑔 ) ( 𝐴 Func 𝐶 ) ( 2nd ‘ 𝑔 ) ) |
36 |
25 34 35
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → ( 1st ‘ 𝑔 ) ( 𝐴 Func 𝐶 ) ( 2nd ‘ 𝑔 ) ) |
37 |
33 36
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → 𝑠 ( 𝐴 Func 𝐶 ) ( 2nd ‘ 𝑔 ) ) |
38 |
23 19 37
|
funcf1 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → 𝑠 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) |
39 |
38
|
ffvelrnda |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑠 ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) ) |
40 |
19 20 21 22 32 39
|
homfeqval |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) = ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ) |
41 |
40
|
ixpeq2dva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) = X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ) |
42 |
1
|
homfeqbas |
⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
43 |
42
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
44 |
43
|
ixpeq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) = X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ) |
45 |
41 44
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) = X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ) |
46 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑟 ‘ 𝑥 ) = ( 𝑟 ‘ 𝑧 ) ) |
47 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑠 ‘ 𝑥 ) = ( 𝑠 ‘ 𝑧 ) ) |
48 |
46 47
|
oveq12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) = ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) |
49 |
48
|
cbvixpv |
⊢ X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) = X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) |
50 |
49
|
eleq2i |
⊢ ( 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ↔ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) |
51 |
43
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
52 |
51
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
53 |
|
eqid |
⊢ ( Hom ‘ 𝐴 ) = ( Hom ‘ 𝐴 ) |
54 |
|
eqid |
⊢ ( Hom ‘ 𝐵 ) = ( Hom ‘ 𝐵 ) |
55 |
1
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
56 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) |
57 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) |
58 |
23 53 54 55 56 57
|
homfeqval |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ) |
59 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
60 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
61 |
3
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
62 |
4
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
63 |
32
|
ad5ant13 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑟 ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) ) |
64 |
31
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝑟 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) |
65 |
64
|
ffvelrnda |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑟 ‘ 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) |
66 |
65
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑟 ‘ 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) |
67 |
38
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝑠 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) |
68 |
67
|
ffvelrnda |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑠 ‘ 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) |
69 |
68
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑠 ‘ 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) |
70 |
30
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑟 ( 𝐴 Func 𝐶 ) ( 2nd ‘ 𝑓 ) ) |
71 |
23 53 20 70 56 57
|
funcf2 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ⟶ ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑟 ‘ 𝑦 ) ) ) |
72 |
71
|
ffvelrnda |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ∈ ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑟 ‘ 𝑦 ) ) ) |
73 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑟 ‘ 𝑧 ) = ( 𝑟 ‘ 𝑦 ) ) |
74 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑠 ‘ 𝑧 ) = ( 𝑠 ‘ 𝑦 ) ) |
75 |
73 74
|
oveq12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) = ( ( 𝑟 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ) |
76 |
75
|
fvixp |
⊢ ( ( 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑎 ‘ 𝑦 ) ∈ ( ( 𝑟 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ) |
77 |
76
|
ad5ant24 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑎 ‘ 𝑦 ) ∈ ( ( 𝑟 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ) |
78 |
19 20 59 60 61 62 63 66 69 72 77
|
comfeqval |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) ) |
79 |
39
|
ad5ant13 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑠 ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) ) |
80 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑟 ‘ 𝑧 ) = ( 𝑟 ‘ 𝑥 ) ) |
81 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑠 ‘ 𝑧 ) = ( 𝑠 ‘ 𝑥 ) ) |
82 |
80 81
|
oveq12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) = ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ) |
83 |
82
|
fvixp |
⊢ ( ( 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑎 ‘ 𝑥 ) ∈ ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ) |
84 |
83
|
ad5ant23 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑎 ‘ 𝑥 ) ∈ ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ) |
85 |
37
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑠 ( 𝐴 Func 𝐶 ) ( 2nd ‘ 𝑔 ) ) |
86 |
23 53 20 85 56 57
|
funcf2 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ⟶ ( ( 𝑠 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ) |
87 |
86
|
ffvelrnda |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ∈ ( ( 𝑠 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ) |
88 |
19 20 59 60 61 62 63 79 69 84 87
|
comfeqval |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) |
89 |
78 88
|
eqeq12d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
90 |
58 89
|
raleqbidva |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
91 |
52 90
|
raleqbidva |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
92 |
51 91
|
raleqbidva |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
93 |
50 92
|
sylan2b |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
94 |
45 93
|
rabeqbidva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
95 |
|
csbeq1a |
⊢ ( 𝑠 = ( 1st ‘ 𝑔 ) → { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
96 |
95
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
97 |
94 96
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
98 |
15 17 18 97
|
csbiedf |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) → ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
99 |
|
csbeq1a |
⊢ ( 𝑟 = ( 1st ‘ 𝑓 ) → ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
100 |
99
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) → ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
101 |
98 100
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) → ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
102 |
11 13 14 101
|
csbiedf |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) → ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
103 |
9 10 102
|
mpoeq123dva |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) , 𝑔 ∈ ( 𝐴 Func 𝐶 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) = ( 𝑓 ∈ ( 𝐵 Func 𝐷 ) , 𝑔 ∈ ( 𝐵 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) ) |
104 |
|
eqid |
⊢ ( 𝐴 Nat 𝐶 ) = ( 𝐴 Nat 𝐶 ) |
105 |
104 23 53 20 59
|
natfval |
⊢ ( 𝐴 Nat 𝐶 ) = ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) , 𝑔 ∈ ( 𝐴 Func 𝐶 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
106 |
|
eqid |
⊢ ( 𝐵 Nat 𝐷 ) = ( 𝐵 Nat 𝐷 ) |
107 |
|
eqid |
⊢ ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 ) |
108 |
106 107 54 21 60
|
natfval |
⊢ ( 𝐵 Nat 𝐷 ) = ( 𝑓 ∈ ( 𝐵 Func 𝐷 ) , 𝑔 ∈ ( 𝐵 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
109 |
103 105 108
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝐴 Nat 𝐶 ) = ( 𝐵 Nat 𝐷 ) ) |