Step |
Hyp |
Ref |
Expression |
1 |
|
prcom |
⊢ { 𝐴 , 𝐶 } = { 𝐶 , 𝐴 } |
2 |
1
|
eleq1i |
⊢ ( { 𝐴 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) |
3 |
2
|
biimpi |
⊢ ( { 𝐴 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) → { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) |
4 |
3
|
adantl |
⊢ ( ( { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐴 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) → { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) |
5 |
|
prcom |
⊢ { 𝐵 , 𝐶 } = { 𝐶 , 𝐵 } |
6 |
5
|
eleq1i |
⊢ ( { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝐶 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) |
7 |
6
|
biimpi |
⊢ ( { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) → { 𝐶 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) |
8 |
7
|
adantl |
⊢ ( ( { 𝐵 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) → { 𝐶 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) |
9 |
4 8
|
anim12i |
⊢ ( ( ( { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐴 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝐵 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐶 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) ) |
10 |
9
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( ( { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐴 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝐵 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐶 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
11 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
12 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
13 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐺 ∈ USGraph ) |
14 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ) |
15 |
|
simpl |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) |
16 |
11 12 13 14 15
|
nb3grprlem1 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐴 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
17 |
|
3ancoma |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ↔ ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ) |
18 |
17
|
biimpi |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ) |
19 |
|
tpcoma |
⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐴 , 𝐶 } |
20 |
19
|
eqeq2i |
⊢ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ↔ ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ) |
21 |
20
|
biimpi |
⊢ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } → ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ) |
22 |
21
|
anim1i |
⊢ ( ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) |
23 |
|
simprr |
⊢ ( ( ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐺 ∈ USGraph ) |
24 |
|
simprl |
⊢ ( ( ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ) |
25 |
|
simpl |
⊢ ( ( ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ) |
26 |
11 12 23 24 25
|
nb3grprlem1 |
⊢ ( ( ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ↔ ( { 𝐵 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
27 |
18 22 26
|
syl2an |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ↔ ( { 𝐵 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
28 |
16 27
|
anbi12d |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ) ↔ ( ( { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐴 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝐵 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
29 |
|
3anrot |
⊢ ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) |
30 |
29
|
biimpri |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) |
31 |
|
tprot |
⊢ { 𝐶 , 𝐴 , 𝐵 } = { 𝐴 , 𝐵 , 𝐶 } |
32 |
31
|
eqcomi |
⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐶 , 𝐴 , 𝐵 } |
33 |
32
|
eqeq2i |
⊢ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ↔ ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ) |
34 |
33
|
anbi1i |
⊢ ( ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ↔ ( ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ∧ 𝐺 ∈ USGraph ) ) |
35 |
34
|
biimpi |
⊢ ( ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ∧ 𝐺 ∈ USGraph ) ) |
36 |
|
simprr |
⊢ ( ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ∧ 𝐺 ∈ USGraph ) ) → 𝐺 ∈ USGraph ) |
37 |
|
simprl |
⊢ ( ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ∧ 𝐺 ∈ USGraph ) ) → ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ) |
38 |
|
simpl |
⊢ ( ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ∧ 𝐺 ∈ USGraph ) ) → ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) |
39 |
11 12 36 37 38
|
nb3grprlem1 |
⊢ ( ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ∧ 𝐺 ∈ USGraph ) ) → ( ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ↔ ( { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐶 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
40 |
30 35 39
|
syl2an |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ↔ ( { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐶 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
41 |
10 28 40
|
3imtr4d |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ) → ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ) |
42 |
41
|
pm4.71d |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ) ↔ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ) ∧ ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ) ) |
43 |
|
df-3an |
⊢ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ↔ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ) ∧ ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ) |
44 |
42 43
|
bitr4di |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ) ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ) ) |