Step |
Hyp |
Ref |
Expression |
1 |
|
nb3grpr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
nb3grpr.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
nb3grpr.g |
⊢ ( 𝜑 → 𝐺 ∈ USGraph ) |
4 |
|
nb3grpr.t |
⊢ ( 𝜑 → 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) |
5 |
|
nb3grpr.s |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) |
6 |
|
nb3grpr.n |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) |
7 |
|
id |
⊢ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) → ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) |
8 |
|
prcom |
⊢ { 𝐴 , 𝐵 } = { 𝐵 , 𝐴 } |
9 |
8
|
eleq1i |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ { 𝐵 , 𝐴 } ∈ 𝐸 ) |
10 |
|
prcom |
⊢ { 𝐵 , 𝐶 } = { 𝐶 , 𝐵 } |
11 |
10
|
eleq1i |
⊢ ( { 𝐵 , 𝐶 } ∈ 𝐸 ↔ { 𝐶 , 𝐵 } ∈ 𝐸 ) |
12 |
|
prcom |
⊢ { 𝐶 , 𝐴 } = { 𝐴 , 𝐶 } |
13 |
12
|
eleq1i |
⊢ ( { 𝐶 , 𝐴 } ∈ 𝐸 ↔ { 𝐴 , 𝐶 } ∈ 𝐸 ) |
14 |
9 11 13
|
3anbi123i |
⊢ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) |
15 |
|
3anrot |
⊢ ( ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ↔ ( { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) |
16 |
14 15
|
bitr4i |
⊢ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) |
17 |
16
|
a1i |
⊢ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) |
18 |
7 17
|
biadanii |
⊢ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ∧ ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) |
19 |
|
an6 |
⊢ ( ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ∧ ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) |
20 |
18 19
|
bitri |
⊢ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) |
21 |
20
|
a1i |
⊢ ( 𝜑 → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) ) |
22 |
1 2 3 4 5
|
nb3grprlem1 |
⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) |
23 |
|
tprot |
⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 , 𝐴 } |
24 |
4 23
|
eqtrdi |
⊢ ( 𝜑 → 𝑉 = { 𝐵 , 𝐶 , 𝐴 } ) |
25 |
|
3anrot |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ↔ ( 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ) ) |
26 |
5 25
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ) ) |
27 |
1 2 3 24 26
|
nb3grprlem1 |
⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐵 ) = { 𝐶 , 𝐴 } ↔ ( { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ) ) ) |
28 |
|
tprot |
⊢ { 𝐶 , 𝐴 , 𝐵 } = { 𝐴 , 𝐵 , 𝐶 } |
29 |
4 28
|
eqtr4di |
⊢ ( 𝜑 → 𝑉 = { 𝐶 , 𝐴 , 𝐵 } ) |
30 |
|
3anrot |
⊢ ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) |
31 |
5 30
|
sylibr |
⊢ ( 𝜑 → ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) |
32 |
1 2 3 29 31
|
nb3grprlem1 |
⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ↔ ( { 𝐶 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) |
33 |
22 27 32
|
3anbi123d |
⊢ ( 𝜑 → ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐶 , 𝐴 } ∧ ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) ) |
34 |
1 2 3 4 5 6
|
nb3grprlem2 |
⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑦 , 𝑧 } ) ) |
35 |
|
necom |
⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴 ) |
36 |
|
necom |
⊢ ( 𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴 ) |
37 |
|
biid |
⊢ ( 𝐵 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶 ) |
38 |
35 36 37
|
3anbi123i |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ↔ ( 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴 ∧ 𝐵 ≠ 𝐶 ) ) |
39 |
|
3anrot |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴 ) ↔ ( 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴 ∧ 𝐵 ≠ 𝐶 ) ) |
40 |
38 39
|
bitr4i |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ↔ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴 ) ) |
41 |
6 40
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴 ) ) |
42 |
1 2 3 24 26 41
|
nb3grprlem2 |
⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐵 ) = { 𝐶 , 𝐴 } ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐵 ) = { 𝑦 , 𝑧 } ) ) |
43 |
|
3anrot |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ↔ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵 ) ) |
44 |
|
necom |
⊢ ( 𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵 ) |
45 |
|
biid |
⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐵 ) |
46 |
36 44 45
|
3anbi123i |
⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵 ) ↔ ( 𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) |
47 |
43 46
|
bitri |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ↔ ( 𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) |
48 |
6 47
|
sylib |
⊢ ( 𝜑 → ( 𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) |
49 |
1 2 3 29 31 48
|
nb3grprlem2 |
⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐶 ) = { 𝑦 , 𝑧 } ) ) |
50 |
34 42 49
|
3anbi123d |
⊢ ( 𝜑 → ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐶 , 𝐴 } ∧ ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ↔ ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑦 , 𝑧 } ∧ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐵 ) = { 𝑦 , 𝑧 } ∧ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐶 ) = { 𝑦 , 𝑧 } ) ) ) |
51 |
21 33 50
|
3bitr2d |
⊢ ( 𝜑 → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑦 , 𝑧 } ∧ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐵 ) = { 𝑦 , 𝑧 } ∧ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐶 ) = { 𝑦 , 𝑧 } ) ) ) |
52 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐺 NeighbVtx 𝑥 ) = ( 𝐺 NeighbVtx 𝐴 ) ) |
53 |
52
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝑦 , 𝑧 } ) ) |
54 |
53
|
2rexbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑦 , 𝑧 } ) ) |
55 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐺 NeighbVtx 𝑥 ) = ( 𝐺 NeighbVtx 𝐵 ) ) |
56 |
55
|
eqeq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ( 𝐺 NeighbVtx 𝐵 ) = { 𝑦 , 𝑧 } ) ) |
57 |
56
|
2rexbidv |
⊢ ( 𝑥 = 𝐵 → ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐵 ) = { 𝑦 , 𝑧 } ) ) |
58 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐺 NeighbVtx 𝑥 ) = ( 𝐺 NeighbVtx 𝐶 ) ) |
59 |
58
|
eqeq1d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ( 𝐺 NeighbVtx 𝐶 ) = { 𝑦 , 𝑧 } ) ) |
60 |
59
|
2rexbidv |
⊢ ( 𝑥 = 𝐶 → ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐶 ) = { 𝑦 , 𝑧 } ) ) |
61 |
54 57 60
|
raltpg |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑦 , 𝑧 } ∧ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐵 ) = { 𝑦 , 𝑧 } ∧ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐶 ) = { 𝑦 , 𝑧 } ) ) ) |
62 |
5 61
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑦 , 𝑧 } ∧ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐵 ) = { 𝑦 , 𝑧 } ∧ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐶 ) = { 𝑦 , 𝑧 } ) ) ) |
63 |
|
raleq |
⊢ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( ∀ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ) ) |
64 |
63
|
bicomd |
⊢ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ∀ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ) ) |
65 |
4 64
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ∀ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ) ) |
66 |
51 62 65
|
3bitr2d |
⊢ ( 𝜑 → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ∀ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ) ) |