Step |
Hyp |
Ref |
Expression |
1 |
|
nb3grpr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
nb3grpr.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
nb3grpr.g |
⊢ ( 𝜑 → 𝐺 ∈ USGraph ) |
4 |
|
nb3grpr.t |
⊢ ( 𝜑 → 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) |
5 |
|
nb3grpr.s |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) |
6 |
|
prid1g |
⊢ ( 𝐵 ∈ 𝑌 → 𝐵 ∈ { 𝐵 , 𝐶 } ) |
7 |
6
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐵 ∈ { 𝐵 , 𝐶 } ) |
8 |
5 7
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ { 𝐵 , 𝐶 } ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → 𝐵 ∈ { 𝐵 , 𝐶 } ) |
10 |
|
eleq2 |
⊢ ( { 𝐵 , 𝐶 } = ( 𝐺 NeighbVtx 𝐴 ) → ( 𝐵 ∈ { 𝐵 , 𝐶 } ↔ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
11 |
10
|
eqcoms |
⊢ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } → ( 𝐵 ∈ { 𝐵 , 𝐶 } ↔ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → ( 𝐵 ∈ { 𝐵 , 𝐶 } ↔ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
13 |
9 12
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) |
14 |
2
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐵 , 𝐴 } ∈ 𝐸 ) ) |
15 |
|
prcom |
⊢ { 𝐵 , 𝐴 } = { 𝐴 , 𝐵 } |
16 |
15
|
a1i |
⊢ ( 𝐺 ∈ USGraph → { 𝐵 , 𝐴 } = { 𝐴 , 𝐵 } ) |
17 |
16
|
eleq1d |
⊢ ( 𝐺 ∈ USGraph → ( { 𝐵 , 𝐴 } ∈ 𝐸 ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
18 |
14 17
|
bitrd |
⊢ ( 𝐺 ∈ USGraph → ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
19 |
3 18
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
21 |
13 20
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → { 𝐴 , 𝐵 } ∈ 𝐸 ) |
22 |
|
prid2g |
⊢ ( 𝐶 ∈ 𝑍 → 𝐶 ∈ { 𝐵 , 𝐶 } ) |
23 |
22
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐶 ∈ { 𝐵 , 𝐶 } ) |
24 |
5 23
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ { 𝐵 , 𝐶 } ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → 𝐶 ∈ { 𝐵 , 𝐶 } ) |
26 |
|
eleq2 |
⊢ ( { 𝐵 , 𝐶 } = ( 𝐺 NeighbVtx 𝐴 ) → ( 𝐶 ∈ { 𝐵 , 𝐶 } ↔ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
27 |
26
|
eqcoms |
⊢ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } → ( 𝐶 ∈ { 𝐵 , 𝐶 } ↔ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → ( 𝐶 ∈ { 𝐵 , 𝐶 } ↔ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
29 |
25 28
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) |
30 |
2
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) |
31 |
|
prcom |
⊢ { 𝐶 , 𝐴 } = { 𝐴 , 𝐶 } |
32 |
31
|
a1i |
⊢ ( 𝐺 ∈ USGraph → { 𝐶 , 𝐴 } = { 𝐴 , 𝐶 } ) |
33 |
32
|
eleq1d |
⊢ ( 𝐺 ∈ USGraph → ( { 𝐶 , 𝐴 } ∈ 𝐸 ↔ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) |
34 |
30 33
|
bitrd |
⊢ ( 𝐺 ∈ USGraph → ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) |
35 |
3 34
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) |
37 |
29 36
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → { 𝐴 , 𝐶 } ∈ 𝐸 ) |
38 |
21 37
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) |
39 |
1 2
|
nbusgr |
⊢ ( 𝐺 ∈ USGraph → ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 ∈ 𝑉 ∣ { 𝐴 , 𝑣 } ∈ 𝐸 } ) |
40 |
3 39
|
syl |
⊢ ( 𝜑 → ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 ∈ 𝑉 ∣ { 𝐴 , 𝑣 } ∈ 𝐸 } ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 ∈ 𝑉 ∣ { 𝐴 , 𝑣 } ∈ 𝐸 } ) |
42 |
|
eleq2 |
⊢ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( 𝑣 ∈ 𝑉 ↔ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
43 |
4 42
|
syl |
⊢ ( 𝜑 → ( 𝑣 ∈ 𝑉 ↔ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 ∈ 𝑉 ↔ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
45 |
|
vex |
⊢ 𝑣 ∈ V |
46 |
45
|
eltp |
⊢ ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝑣 = 𝐴 ∨ 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) |
47 |
2
|
usgredgne |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) → 𝐴 ≠ 𝑣 ) |
48 |
|
df-ne |
⊢ ( 𝐴 ≠ 𝑣 ↔ ¬ 𝐴 = 𝑣 ) |
49 |
|
pm2.24 |
⊢ ( 𝐴 = 𝑣 → ( ¬ 𝐴 = 𝑣 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) |
50 |
49
|
eqcoms |
⊢ ( 𝑣 = 𝐴 → ( ¬ 𝐴 = 𝑣 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) |
51 |
50
|
com12 |
⊢ ( ¬ 𝐴 = 𝑣 → ( 𝑣 = 𝐴 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) |
52 |
48 51
|
sylbi |
⊢ ( 𝐴 ≠ 𝑣 → ( 𝑣 = 𝐴 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) |
53 |
47 52
|
syl |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) → ( 𝑣 = 𝐴 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) |
54 |
53
|
ex |
⊢ ( 𝐺 ∈ USGraph → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐴 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
55 |
3 54
|
syl |
⊢ ( 𝜑 → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐴 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐴 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
57 |
56
|
com3r |
⊢ ( 𝑣 = 𝐴 → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
58 |
|
orc |
⊢ ( 𝑣 = 𝐵 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) |
59 |
58
|
2a1d |
⊢ ( 𝑣 = 𝐵 → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
60 |
|
olc |
⊢ ( 𝑣 = 𝐶 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) |
61 |
60
|
2a1d |
⊢ ( 𝑣 = 𝐶 → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
62 |
57 59 61
|
3jaoi |
⊢ ( ( 𝑣 = 𝐴 ∨ 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
63 |
46 62
|
sylbi |
⊢ ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
64 |
63
|
com12 |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
65 |
44 64
|
sylbid |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 ∈ 𝑉 → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
66 |
65
|
impd |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) |
67 |
|
eqid |
⊢ 𝐵 = 𝐵 |
68 |
67
|
3mix2i |
⊢ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶 ) |
69 |
5
|
simp2d |
⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) |
70 |
|
eltpg |
⊢ ( 𝐵 ∈ 𝑌 → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶 ) ) ) |
71 |
69 70
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶 ) ) ) |
72 |
68 71
|
mpbiri |
⊢ ( 𝜑 → 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
73 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 = 𝐵 ) → 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
74 |
|
eleq1 |
⊢ ( 𝑣 = 𝐵 → ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
75 |
74
|
bicomd |
⊢ ( 𝑣 = 𝐵 → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
76 |
75
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑣 = 𝐵 ) → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
77 |
73 76
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑣 = 𝐵 ) → 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
78 |
42
|
bicomd |
⊢ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ 𝑉 ) ) |
79 |
4 78
|
syl |
⊢ ( 𝜑 → ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ 𝑉 ) ) |
80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 = 𝐵 ) → ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ 𝑉 ) ) |
81 |
77 80
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑣 = 𝐵 ) → 𝑣 ∈ 𝑉 ) |
82 |
81
|
ex |
⊢ ( 𝜑 → ( 𝑣 = 𝐵 → 𝑣 ∈ 𝑉 ) ) |
83 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 = 𝐵 → 𝑣 ∈ 𝑉 ) ) |
84 |
83
|
impcom |
⊢ ( ( 𝑣 = 𝐵 ∧ ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) → 𝑣 ∈ 𝑉 ) |
85 |
|
preq2 |
⊢ ( 𝐵 = 𝑣 → { 𝐴 , 𝐵 } = { 𝐴 , 𝑣 } ) |
86 |
85
|
eleq1d |
⊢ ( 𝐵 = 𝑣 → ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
87 |
86
|
eqcoms |
⊢ ( 𝑣 = 𝐵 → ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
88 |
87
|
biimpcd |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( 𝑣 = 𝐵 → { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
89 |
88
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 = 𝐵 → { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
90 |
89
|
impcom |
⊢ ( ( 𝑣 = 𝐵 ∧ ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) → { 𝐴 , 𝑣 } ∈ 𝐸 ) |
91 |
84 90
|
jca |
⊢ ( ( 𝑣 = 𝐵 ∧ ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) → ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
92 |
91
|
ex |
⊢ ( 𝑣 = 𝐵 → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) ) |
93 |
|
tpid3g |
⊢ ( 𝐶 ∈ 𝑍 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
94 |
93
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
95 |
5 94
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 = 𝐶 ) → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
97 |
|
eleq1 |
⊢ ( 𝑣 = 𝐶 → ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
98 |
97
|
bicomd |
⊢ ( 𝑣 = 𝐶 → ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
99 |
98
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑣 = 𝐶 ) → ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
100 |
96 99
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑣 = 𝐶 ) → 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
101 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 = 𝐶 ) → ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ 𝑉 ) ) |
102 |
100 101
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑣 = 𝐶 ) → 𝑣 ∈ 𝑉 ) |
103 |
102
|
ex |
⊢ ( 𝜑 → ( 𝑣 = 𝐶 → 𝑣 ∈ 𝑉 ) ) |
104 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 = 𝐶 → 𝑣 ∈ 𝑉 ) ) |
105 |
104
|
impcom |
⊢ ( ( 𝑣 = 𝐶 ∧ ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) → 𝑣 ∈ 𝑉 ) |
106 |
|
preq2 |
⊢ ( 𝐶 = 𝑣 → { 𝐴 , 𝐶 } = { 𝐴 , 𝑣 } ) |
107 |
106
|
eleq1d |
⊢ ( 𝐶 = 𝑣 → ( { 𝐴 , 𝐶 } ∈ 𝐸 ↔ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
108 |
107
|
eqcoms |
⊢ ( 𝑣 = 𝐶 → ( { 𝐴 , 𝐶 } ∈ 𝐸 ↔ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
109 |
108
|
biimpcd |
⊢ ( { 𝐴 , 𝐶 } ∈ 𝐸 → ( 𝑣 = 𝐶 → { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
110 |
109
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 = 𝐶 → { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
111 |
110
|
impcom |
⊢ ( ( 𝑣 = 𝐶 ∧ ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) → { 𝐴 , 𝑣 } ∈ 𝐸 ) |
112 |
105 111
|
jca |
⊢ ( ( 𝑣 = 𝐶 ∧ ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) → ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
113 |
112
|
ex |
⊢ ( 𝑣 = 𝐶 → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) ) |
114 |
92 113
|
jaoi |
⊢ ( ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) ) |
115 |
114
|
com12 |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) → ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) ) |
116 |
66 115
|
impbid |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) ↔ ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) |
117 |
116
|
abbidv |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → { 𝑣 ∣ ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) } = { 𝑣 ∣ ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) } ) |
118 |
|
df-rab |
⊢ { 𝑣 ∈ 𝑉 ∣ { 𝐴 , 𝑣 } ∈ 𝐸 } = { 𝑣 ∣ ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) } |
119 |
|
dfpr2 |
⊢ { 𝐵 , 𝐶 } = { 𝑣 ∣ ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) } |
120 |
117 118 119
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → { 𝑣 ∈ 𝑉 ∣ { 𝐴 , 𝑣 } ∈ 𝐸 } = { 𝐵 , 𝐶 } ) |
121 |
41 120
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) |
122 |
38 121
|
impbida |
⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) |