Step |
Hyp |
Ref |
Expression |
1 |
|
nb3grpr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
nb3grpr.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
nb3grpr.g |
⊢ ( 𝜑 → 𝐺 ∈ USGraph ) |
4 |
|
nb3grpr.t |
⊢ ( 𝜑 → 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) |
5 |
|
nb3grpr.s |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) |
6 |
|
nb3grpr.n |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) |
7 |
|
sneq |
⊢ ( 𝑣 = 𝐴 → { 𝑣 } = { 𝐴 } ) |
8 |
7
|
difeq2d |
⊢ ( 𝑣 = 𝐴 → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) = ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) ) |
9 |
|
preq1 |
⊢ ( 𝑣 = 𝐴 → { 𝑣 , 𝑤 } = { 𝐴 , 𝑤 } ) |
10 |
9
|
eqeq2d |
⊢ ( 𝑣 = 𝐴 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ) ) |
11 |
8 10
|
rexeqbidv |
⊢ ( 𝑣 = 𝐴 → ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ) ) |
12 |
|
sneq |
⊢ ( 𝑣 = 𝐵 → { 𝑣 } = { 𝐵 } ) |
13 |
12
|
difeq2d |
⊢ ( 𝑣 = 𝐵 → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) = ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) ) |
14 |
|
preq1 |
⊢ ( 𝑣 = 𝐵 → { 𝑣 , 𝑤 } = { 𝐵 , 𝑤 } ) |
15 |
14
|
eqeq2d |
⊢ ( 𝑣 = 𝐵 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ) ) |
16 |
13 15
|
rexeqbidv |
⊢ ( 𝑣 = 𝐵 → ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ) ) |
17 |
|
sneq |
⊢ ( 𝑣 = 𝐶 → { 𝑣 } = { 𝐶 } ) |
18 |
17
|
difeq2d |
⊢ ( 𝑣 = 𝐶 → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) = ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) ) |
19 |
|
preq1 |
⊢ ( 𝑣 = 𝐶 → { 𝑣 , 𝑤 } = { 𝐶 , 𝑤 } ) |
20 |
19
|
eqeq2d |
⊢ ( 𝑣 = 𝐶 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ) |
21 |
18 20
|
rexeqbidv |
⊢ ( 𝑣 = 𝐶 → ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ) |
22 |
11 16 21
|
rextpg |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ∃ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ∨ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ∨ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ) ) |
23 |
5 22
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ∨ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ∨ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ) ) |
24 |
4 3
|
jca |
⊢ ( 𝜑 → ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) |
25 |
|
simpl |
⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) |
26 |
|
difeq1 |
⊢ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( 𝑉 ∖ { 𝑣 } ) = ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( 𝑉 ∖ { 𝑣 } ) = ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) ) |
28 |
27
|
rexeqdv |
⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( ∃ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ) ) |
29 |
25 28
|
rexeqbidv |
⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ∃ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ) ) |
30 |
24 29
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ∃ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ) ) |
31 |
|
preq2 |
⊢ ( 𝑤 = 𝐵 → { 𝐴 , 𝑤 } = { 𝐴 , 𝐵 } ) |
32 |
31
|
eqeq2d |
⊢ ( 𝑤 = 𝐵 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ) ) |
33 |
|
preq2 |
⊢ ( 𝑤 = 𝐶 → { 𝐴 , 𝑤 } = { 𝐴 , 𝐶 } ) |
34 |
33
|
eqeq2d |
⊢ ( 𝑤 = 𝐶 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ) |
35 |
32 34
|
rexprg |
⊢ ( ( 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ∃ 𝑤 ∈ { 𝐵 , 𝐶 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ) ) |
36 |
35
|
3adant1 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ∃ 𝑤 ∈ { 𝐵 , 𝐶 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ) ) |
37 |
|
preq2 |
⊢ ( 𝑤 = 𝐶 → { 𝐵 , 𝑤 } = { 𝐵 , 𝐶 } ) |
38 |
37
|
eqeq2d |
⊢ ( 𝑤 = 𝐶 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) ) |
39 |
|
preq2 |
⊢ ( 𝑤 = 𝐴 → { 𝐵 , 𝑤 } = { 𝐵 , 𝐴 } ) |
40 |
39
|
eqeq2d |
⊢ ( 𝑤 = 𝐴 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ) |
41 |
38 40
|
rexprg |
⊢ ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑤 ∈ { 𝐶 , 𝐴 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ) ) |
42 |
41
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) → ( ∃ 𝑤 ∈ { 𝐶 , 𝐴 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ) ) |
43 |
42
|
3adant2 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ∃ 𝑤 ∈ { 𝐶 , 𝐴 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ) ) |
44 |
|
preq2 |
⊢ ( 𝑤 = 𝐴 → { 𝐶 , 𝑤 } = { 𝐶 , 𝐴 } ) |
45 |
44
|
eqeq2d |
⊢ ( 𝑤 = 𝐴 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ) ) |
46 |
|
preq2 |
⊢ ( 𝑤 = 𝐵 → { 𝐶 , 𝑤 } = { 𝐶 , 𝐵 } ) |
47 |
46
|
eqeq2d |
⊢ ( 𝑤 = 𝐵 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) |
48 |
45 47
|
rexprg |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ∃ 𝑤 ∈ { 𝐴 , 𝐵 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ) |
49 |
48
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ∃ 𝑤 ∈ { 𝐴 , 𝐵 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ) |
50 |
36 43 49
|
3orbi123d |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ( ∃ 𝑤 ∈ { 𝐵 , 𝐶 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ∨ ∃ 𝑤 ∈ { 𝐶 , 𝐴 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ∨ ∃ 𝑤 ∈ { 𝐴 , 𝐵 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ↔ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ∨ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ∨ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ) ) |
51 |
5 50
|
syl |
⊢ ( 𝜑 → ( ( ∃ 𝑤 ∈ { 𝐵 , 𝐶 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ∨ ∃ 𝑤 ∈ { 𝐶 , 𝐴 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ∨ ∃ 𝑤 ∈ { 𝐴 , 𝐵 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ↔ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ∨ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ∨ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ) ) |
52 |
|
tprot |
⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 , 𝐴 } |
53 |
52
|
a1i |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 , 𝐴 } ) |
54 |
53
|
difeq1d |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) = ( { 𝐵 , 𝐶 , 𝐴 } ∖ { 𝐴 } ) ) |
55 |
|
necom |
⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴 ) |
56 |
|
necom |
⊢ ( 𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴 ) |
57 |
|
diftpsn3 |
⊢ ( ( 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴 ) → ( { 𝐵 , 𝐶 , 𝐴 } ∖ { 𝐴 } ) = { 𝐵 , 𝐶 } ) |
58 |
55 56 57
|
syl2anb |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) → ( { 𝐵 , 𝐶 , 𝐴 } ∖ { 𝐴 } ) = { 𝐵 , 𝐶 } ) |
59 |
58
|
3adant3 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐵 , 𝐶 , 𝐴 } ∖ { 𝐴 } ) = { 𝐵 , 𝐶 } ) |
60 |
54 59
|
eqtrd |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) = { 𝐵 , 𝐶 } ) |
61 |
60
|
rexeqdv |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ↔ ∃ 𝑤 ∈ { 𝐵 , 𝐶 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ) ) |
62 |
|
tprot |
⊢ { 𝐶 , 𝐴 , 𝐵 } = { 𝐴 , 𝐵 , 𝐶 } |
63 |
62
|
eqcomi |
⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐶 , 𝐴 , 𝐵 } |
64 |
63
|
a1i |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐶 , 𝐴 , 𝐵 } ) |
65 |
64
|
difeq1d |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) = ( { 𝐶 , 𝐴 , 𝐵 } ∖ { 𝐵 } ) ) |
66 |
|
necom |
⊢ ( 𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵 ) |
67 |
66
|
anbi1i |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵 ) ↔ ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) |
68 |
67
|
biimpi |
⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) |
69 |
68
|
ancoms |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) |
70 |
|
diftpsn3 |
⊢ ( ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐶 , 𝐴 , 𝐵 } ∖ { 𝐵 } ) = { 𝐶 , 𝐴 } ) |
71 |
69 70
|
syl |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐶 , 𝐴 , 𝐵 } ∖ { 𝐵 } ) = { 𝐶 , 𝐴 } ) |
72 |
71
|
3adant2 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐶 , 𝐴 , 𝐵 } ∖ { 𝐵 } ) = { 𝐶 , 𝐴 } ) |
73 |
65 72
|
eqtrd |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) = { 𝐶 , 𝐴 } ) |
74 |
73
|
rexeqdv |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ↔ ∃ 𝑤 ∈ { 𝐶 , 𝐴 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ) ) |
75 |
|
diftpsn3 |
⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) = { 𝐴 , 𝐵 } ) |
76 |
75
|
3adant1 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) = { 𝐴 , 𝐵 } ) |
77 |
76
|
rexeqdv |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ↔ ∃ 𝑤 ∈ { 𝐴 , 𝐵 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ) |
78 |
61 74 77
|
3orbi123d |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ∨ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ∨ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ↔ ( ∃ 𝑤 ∈ { 𝐵 , 𝐶 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ∨ ∃ 𝑤 ∈ { 𝐶 , 𝐴 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ∨ ∃ 𝑤 ∈ { 𝐴 , 𝐵 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ) ) |
79 |
6 78
|
syl |
⊢ ( 𝜑 → ( ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ∨ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ∨ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ↔ ( ∃ 𝑤 ∈ { 𝐵 , 𝐶 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ∨ ∃ 𝑤 ∈ { 𝐶 , 𝐴 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ∨ ∃ 𝑤 ∈ { 𝐴 , 𝐵 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ) ) |
80 |
|
prcom |
⊢ { 𝐶 , 𝐵 } = { 𝐵 , 𝐶 } |
81 |
80
|
eqeq2i |
⊢ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) |
82 |
81
|
orbi2i |
⊢ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) ) |
83 |
|
oridm |
⊢ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) |
84 |
82 83
|
bitr2i |
⊢ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) |
85 |
84
|
a1i |
⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ) |
86 |
|
nbgrnself2 |
⊢ 𝐴 ∉ ( 𝐺 NeighbVtx 𝐴 ) |
87 |
|
df-nel |
⊢ ( 𝐴 ∉ ( 𝐺 NeighbVtx 𝐴 ) ↔ ¬ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) |
88 |
|
prid2g |
⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ { 𝐵 , 𝐴 } ) |
89 |
88
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐴 ∈ { 𝐵 , 𝐴 } ) |
90 |
|
eleq2 |
⊢ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } → ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ 𝐴 ∈ { 𝐵 , 𝐴 } ) ) |
91 |
89 90
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } → 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
92 |
91
|
con3rr3 |
⊢ ( ¬ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ) |
93 |
87 92
|
sylbi |
⊢ ( 𝐴 ∉ ( 𝐺 NeighbVtx 𝐴 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ) |
94 |
86 5 93
|
mpsyl |
⊢ ( 𝜑 → ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) |
95 |
|
biorf |
⊢ ( ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) ) ) |
96 |
|
orcom |
⊢ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ) |
97 |
95 96
|
bitrdi |
⊢ ( ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ) ) |
98 |
94 97
|
syl |
⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ) ) |
99 |
|
prid2g |
⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ { 𝐶 , 𝐴 } ) |
100 |
99
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐴 ∈ { 𝐶 , 𝐴 } ) |
101 |
|
eleq2 |
⊢ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } → ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ 𝐴 ∈ { 𝐶 , 𝐴 } ) ) |
102 |
100 101
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } → 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
103 |
102
|
con3rr3 |
⊢ ( ¬ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ) ) |
104 |
87 103
|
sylbi |
⊢ ( 𝐴 ∉ ( 𝐺 NeighbVtx 𝐴 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ) ) |
105 |
86 5 104
|
mpsyl |
⊢ ( 𝜑 → ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ) |
106 |
|
biorf |
⊢ ( ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ) |
107 |
105 106
|
syl |
⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ) |
108 |
98 107
|
orbi12d |
⊢ ( 𝜑 → ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ↔ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ∨ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ) ) |
109 |
|
prid1g |
⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
110 |
109
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
111 |
|
eleq2 |
⊢ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } → ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ 𝐴 ∈ { 𝐴 , 𝐵 } ) ) |
112 |
110 111
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } → 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
113 |
112
|
con3dimp |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ¬ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) → ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ) |
114 |
|
prid1g |
⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ { 𝐴 , 𝐶 } ) |
115 |
114
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐴 ∈ { 𝐴 , 𝐶 } ) |
116 |
|
eleq2 |
⊢ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } → ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ 𝐴 ∈ { 𝐴 , 𝐶 } ) ) |
117 |
115 116
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } → 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
118 |
117
|
con3dimp |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ¬ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) → ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) |
119 |
113 118
|
jca |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ¬ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) → ( ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∧ ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ) |
120 |
119
|
expcom |
⊢ ( ¬ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∧ ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ) ) |
121 |
87 120
|
sylbi |
⊢ ( 𝐴 ∉ ( 𝐺 NeighbVtx 𝐴 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∧ ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ) ) |
122 |
86 5 121
|
mpsyl |
⊢ ( 𝜑 → ( ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∧ ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ) |
123 |
|
ioran |
⊢ ( ¬ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ↔ ( ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∧ ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ) |
124 |
122 123
|
sylibr |
⊢ ( 𝜑 → ¬ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ) |
125 |
124
|
3bior1fd |
⊢ ( 𝜑 → ( ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ∨ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ↔ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ∨ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ∨ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ) ) |
126 |
85 108 125
|
3bitrd |
⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ∨ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ∨ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ) ) |
127 |
51 79 126
|
3bitr4rd |
⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ∨ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ∨ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ) ) |
128 |
23 30 127
|
3bitr4rd |
⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ) ) |