Metamath Proof Explorer


Theorem nbbn

Description: Move negation outside of biconditional. Compare Theorem *5.18 of WhiteheadRussell p. 124. (Contributed by NM, 27-Jun-2002) (Proof shortened by Wolf Lammen, 20-Sep-2013)

Ref Expression
Assertion nbbn ( ( ¬ 𝜑𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 xor3 ( ¬ ( 𝜑𝜓 ) ↔ ( 𝜑 ↔ ¬ 𝜓 ) )
2 con2bi ( ( 𝜑 ↔ ¬ 𝜓 ) ↔ ( 𝜓 ↔ ¬ 𝜑 ) )
3 bicom ( ( 𝜓 ↔ ¬ 𝜑 ) ↔ ( ¬ 𝜑𝜓 ) )
4 1 2 3 3bitrri ( ( ¬ 𝜑𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )