| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nbcplgr.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								1
							 | 
							cplgruvtxb | 
							⊢ ( 𝐺  ∈  ComplGraph  →  ( 𝐺  ∈  ComplGraph  ↔  ( UnivVtx ‘ 𝐺 )  =  𝑉 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							ibi | 
							⊢ ( 𝐺  ∈  ComplGraph  →  ( UnivVtx ‘ 𝐺 )  =  𝑉 )  | 
						
						
							| 4 | 
							
								3
							 | 
							eqcomd | 
							⊢ ( 𝐺  ∈  ComplGraph  →  𝑉  =  ( UnivVtx ‘ 𝐺 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							eleq2d | 
							⊢ ( 𝐺  ∈  ComplGraph  →  ( 𝑁  ∈  𝑉  ↔  𝑁  ∈  ( UnivVtx ‘ 𝐺 ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							biimpa | 
							⊢ ( ( 𝐺  ∈  ComplGraph  ∧  𝑁  ∈  𝑉 )  →  𝑁  ∈  ( UnivVtx ‘ 𝐺 ) )  | 
						
						
							| 7 | 
							
								1
							 | 
							uvtxnbgrb | 
							⊢ ( 𝑁  ∈  𝑉  →  ( 𝑁  ∈  ( UnivVtx ‘ 𝐺 )  ↔  ( 𝐺  NeighbVtx  𝑁 )  =  ( 𝑉  ∖  { 𝑁 } ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantl | 
							⊢ ( ( 𝐺  ∈  ComplGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝑁  ∈  ( UnivVtx ‘ 𝐺 )  ↔  ( 𝐺  NeighbVtx  𝑁 )  =  ( 𝑉  ∖  { 𝑁 } ) ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							mpbid | 
							⊢ ( ( 𝐺  ∈  ComplGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝐺  NeighbVtx  𝑁 )  =  ( 𝑉  ∖  { 𝑁 } ) )  |