Metamath Proof Explorer


Theorem nbfiusgrfi

Description: The class of neighbors of a vertex in a finite simple graph is a finite set. (Contributed by Alexander van der Vekens, 7-Mar-2018) (Revised by AV, 28-Oct-2020)

Ref Expression
Assertion nbfiusgrfi ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 NeighbVtx 𝑁 ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 fusgrusgr ( 𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph )
2 1 adantr ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → 𝐺 ∈ USGraph )
3 fusgrfis ( 𝐺 ∈ FinUSGraph → ( Edg ‘ 𝐺 ) ∈ Fin )
4 3 adantr ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → ( Edg ‘ 𝐺 ) ∈ Fin )
5 simpr ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑁 ∈ ( Vtx ‘ 𝐺 ) )
6 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
7 eqid ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 )
8 6 7 nbusgrfi ( ( 𝐺 ∈ USGraph ∧ ( Edg ‘ 𝐺 ) ∈ Fin ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 NeighbVtx 𝑁 ) ∈ Fin )
9 2 4 5 8 syl3anc ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 NeighbVtx 𝑁 ) ∈ Fin )