Description: In an empty graph (with no edges), every vertex has no neighbor. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 26-Oct-2020) (Proof shortened by AV, 15-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | nbgr0edg | ⊢ ( ( Edg ‘ 𝐺 ) = ∅ → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rzal | ⊢ ( ( Edg ‘ 𝐺 ) = ∅ → ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ¬ { 𝐾 , 𝑛 } ⊆ 𝑒 ) | |
2 | ralnex | ⊢ ( ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ¬ { 𝐾 , 𝑛 } ⊆ 𝑒 ↔ ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ) | |
3 | 1 2 | sylib | ⊢ ( ( Edg ‘ 𝐺 ) = ∅ → ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ) |
4 | 3 | ralrimivw | ⊢ ( ( Edg ‘ 𝐺 ) = ∅ → ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ) |
5 | 4 | nbgr0vtxlem | ⊢ ( ( Edg ‘ 𝐺 ) = ∅ → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) |