Step |
Hyp |
Ref |
Expression |
1 |
|
ral0 |
⊢ ∀ 𝑛 ∈ ∅ ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 |
2 |
|
difeq1 |
⊢ ( ( Vtx ‘ 𝐺 ) = ∅ → ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) = ( ∅ ∖ { 𝐾 } ) ) |
3 |
|
0dif |
⊢ ( ∅ ∖ { 𝐾 } ) = ∅ |
4 |
2 3
|
eqtrdi |
⊢ ( ( Vtx ‘ 𝐺 ) = ∅ → ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) = ∅ ) |
5 |
4
|
raleqdv |
⊢ ( ( Vtx ‘ 𝐺 ) = ∅ → ( ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ↔ ∀ 𝑛 ∈ ∅ ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ) ) |
6 |
1 5
|
mpbiri |
⊢ ( ( Vtx ‘ 𝐺 ) = ∅ → ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ) |
7 |
6
|
nbgr0vtxlem |
⊢ ( ( Vtx ‘ 𝐺 ) = ∅ → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) |