Metamath Proof Explorer


Theorem nbgr0vtx

Description: In a null graph (with no vertices), all neighborhoods are empty. (Contributed by AV, 15-Nov-2020)

Ref Expression
Assertion nbgr0vtx ( ( Vtx ‘ 𝐺 ) = ∅ → ( 𝐺 NeighbVtx 𝐾 ) = ∅ )

Proof

Step Hyp Ref Expression
1 ral0 𝑛 ∈ ∅ ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒
2 difeq1 ( ( Vtx ‘ 𝐺 ) = ∅ → ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) = ( ∅ ∖ { 𝐾 } ) )
3 0dif ( ∅ ∖ { 𝐾 } ) = ∅
4 2 3 eqtrdi ( ( Vtx ‘ 𝐺 ) = ∅ → ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) = ∅ )
5 4 raleqdv ( ( Vtx ‘ 𝐺 ) = ∅ → ( ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ↔ ∀ 𝑛 ∈ ∅ ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ) )
6 1 5 mpbiri ( ( Vtx ‘ 𝐺 ) = ∅ → ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 )
7 6 nbgr0vtxlem ( ( Vtx ‘ 𝐺 ) = ∅ → ( 𝐺 NeighbVtx 𝐾 ) = ∅ )