Step |
Hyp |
Ref |
Expression |
1 |
|
nbgr0vtxlem.v |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
4 |
2 3
|
nbgrval |
⊢ ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) → ( 𝐺 NeighbVtx 𝐾 ) = { 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 } ) |
5 |
4
|
ad2antrl |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) ∧ ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝜑 ) ) → ( 𝐺 NeighbVtx 𝐾 ) = { 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 } ) |
6 |
1
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) ∧ ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝜑 ) ) → ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ) |
7 |
|
rabeq0 |
⊢ ( { 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 } = ∅ ↔ ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ) |
8 |
6 7
|
sylibr |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) ∧ ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝜑 ) ) → { 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 } = ∅ ) |
9 |
5 8
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) ∧ ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝜑 ) ) → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) |
10 |
9
|
expcom |
⊢ ( ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝜑 ) → ( ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) ) |
11 |
10
|
ex |
⊢ ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) → ( 𝜑 → ( ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) ) ) |
12 |
11
|
com23 |
⊢ ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) → ( ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) → ( 𝜑 → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) ) ) |
13 |
|
df-nel |
⊢ ( 𝐾 ∉ ( Vtx ‘ 𝐺 ) ↔ ¬ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) |
14 |
2
|
nbgrnvtx0 |
⊢ ( 𝐾 ∉ ( Vtx ‘ 𝐺 ) → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) |
15 |
13 14
|
sylbir |
⊢ ( ¬ 𝐾 ∈ ( Vtx ‘ 𝐺 ) → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) |
16 |
15
|
a1d |
⊢ ( ¬ 𝐾 ∈ ( Vtx ‘ 𝐺 ) → ( 𝜑 → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) ) |
17 |
|
nbgrprc0 |
⊢ ( ¬ ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) |
18 |
17
|
a1d |
⊢ ( ¬ ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) → ( 𝜑 → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) ) |
19 |
12 16 18
|
pm2.61nii |
⊢ ( 𝜑 → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) |