Step |
Hyp |
Ref |
Expression |
1 |
|
nbgrssovtx.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
nbgrisvtx |
⊢ ( 𝑣 ∈ ( 𝐺 NeighbVtx 𝑋 ) → 𝑣 ∈ 𝑉 ) |
3 |
|
nbgrnself2 |
⊢ 𝑋 ∉ ( 𝐺 NeighbVtx 𝑋 ) |
4 |
|
df-nel |
⊢ ( 𝑣 ∉ ( 𝐺 NeighbVtx 𝑋 ) ↔ ¬ 𝑣 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) |
5 |
|
neleq1 |
⊢ ( 𝑣 = 𝑋 → ( 𝑣 ∉ ( 𝐺 NeighbVtx 𝑋 ) ↔ 𝑋 ∉ ( 𝐺 NeighbVtx 𝑋 ) ) ) |
6 |
4 5
|
bitr3id |
⊢ ( 𝑣 = 𝑋 → ( ¬ 𝑣 ∈ ( 𝐺 NeighbVtx 𝑋 ) ↔ 𝑋 ∉ ( 𝐺 NeighbVtx 𝑋 ) ) ) |
7 |
3 6
|
mpbiri |
⊢ ( 𝑣 = 𝑋 → ¬ 𝑣 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) |
8 |
7
|
necon2ai |
⊢ ( 𝑣 ∈ ( 𝐺 NeighbVtx 𝑋 ) → 𝑣 ≠ 𝑋 ) |
9 |
|
eldifsn |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑋 } ) ↔ ( 𝑣 ∈ 𝑉 ∧ 𝑣 ≠ 𝑋 ) ) |
10 |
2 8 9
|
sylanbrc |
⊢ ( 𝑣 ∈ ( 𝐺 NeighbVtx 𝑋 ) → 𝑣 ∈ ( 𝑉 ∖ { 𝑋 } ) ) |
11 |
10
|
ssriv |
⊢ ( 𝐺 NeighbVtx 𝑋 ) ⊆ ( 𝑉 ∖ { 𝑋 } ) |