| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nbgrval.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | nbgrval.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | df-nbgr | ⊢  NeighbVtx   =  ( 𝑔  ∈  V ,  𝑘  ∈  ( Vtx ‘ 𝑔 )  ↦  { 𝑛  ∈  ( ( Vtx ‘ 𝑔 )  ∖  { 𝑘 } )  ∣  ∃ 𝑒  ∈  ( Edg ‘ 𝑔 ) { 𝑘 ,  𝑛 }  ⊆  𝑒 } ) | 
						
							| 4 | 1 | 1vgrex | ⊢ ( 𝑁  ∈  𝑉  →  𝐺  ∈  V ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( Vtx ‘ 𝑔 )  =  ( Vtx ‘ 𝐺 ) ) | 
						
							| 6 | 1 5 | eqtr4id | ⊢ ( 𝑔  =  𝐺  →  𝑉  =  ( Vtx ‘ 𝑔 ) ) | 
						
							| 7 | 6 | eleq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑁  ∈  𝑉  ↔  𝑁  ∈  ( Vtx ‘ 𝑔 ) ) ) | 
						
							| 8 | 7 | biimpac | ⊢ ( ( 𝑁  ∈  𝑉  ∧  𝑔  =  𝐺 )  →  𝑁  ∈  ( Vtx ‘ 𝑔 ) ) | 
						
							| 9 |  | fvex | ⊢ ( Vtx ‘ 𝑔 )  ∈  V | 
						
							| 10 | 9 | difexi | ⊢ ( ( Vtx ‘ 𝑔 )  ∖  { 𝑘 } )  ∈  V | 
						
							| 11 |  | rabexg | ⊢ ( ( ( Vtx ‘ 𝑔 )  ∖  { 𝑘 } )  ∈  V  →  { 𝑛  ∈  ( ( Vtx ‘ 𝑔 )  ∖  { 𝑘 } )  ∣  ∃ 𝑒  ∈  ( Edg ‘ 𝑔 ) { 𝑘 ,  𝑛 }  ⊆  𝑒 }  ∈  V ) | 
						
							| 12 | 10 11 | mp1i | ⊢ ( ( 𝑁  ∈  𝑉  ∧  ( 𝑔  =  𝐺  ∧  𝑘  =  𝑁 ) )  →  { 𝑛  ∈  ( ( Vtx ‘ 𝑔 )  ∖  { 𝑘 } )  ∣  ∃ 𝑒  ∈  ( Edg ‘ 𝑔 ) { 𝑘 ,  𝑛 }  ⊆  𝑒 }  ∈  V ) | 
						
							| 13 | 5 1 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( Vtx ‘ 𝑔 )  =  𝑉 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑘  =  𝑁 )  →  ( Vtx ‘ 𝑔 )  =  𝑉 ) | 
						
							| 15 |  | sneq | ⊢ ( 𝑘  =  𝑁  →  { 𝑘 }  =  { 𝑁 } ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑘  =  𝑁 )  →  { 𝑘 }  =  { 𝑁 } ) | 
						
							| 17 | 14 16 | difeq12d | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑘  =  𝑁 )  →  ( ( Vtx ‘ 𝑔 )  ∖  { 𝑘 } )  =  ( 𝑉  ∖  { 𝑁 } ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝑁  ∈  𝑉  ∧  ( 𝑔  =  𝐺  ∧  𝑘  =  𝑁 ) )  →  ( ( Vtx ‘ 𝑔 )  ∖  { 𝑘 } )  =  ( 𝑉  ∖  { 𝑁 } ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( Edg ‘ 𝑔 )  =  ( Edg ‘ 𝐺 ) ) | 
						
							| 20 | 19 2 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( Edg ‘ 𝑔 )  =  𝐸 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑘  =  𝑁 )  →  ( Edg ‘ 𝑔 )  =  𝐸 ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝑁  ∈  𝑉  ∧  ( 𝑔  =  𝐺  ∧  𝑘  =  𝑁 ) )  →  ( Edg ‘ 𝑔 )  =  𝐸 ) | 
						
							| 23 |  | preq1 | ⊢ ( 𝑘  =  𝑁  →  { 𝑘 ,  𝑛 }  =  { 𝑁 ,  𝑛 } ) | 
						
							| 24 | 23 | sseq1d | ⊢ ( 𝑘  =  𝑁  →  ( { 𝑘 ,  𝑛 }  ⊆  𝑒  ↔  { 𝑁 ,  𝑛 }  ⊆  𝑒 ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑘  =  𝑁 )  →  ( { 𝑘 ,  𝑛 }  ⊆  𝑒  ↔  { 𝑁 ,  𝑛 }  ⊆  𝑒 ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝑁  ∈  𝑉  ∧  ( 𝑔  =  𝐺  ∧  𝑘  =  𝑁 ) )  →  ( { 𝑘 ,  𝑛 }  ⊆  𝑒  ↔  { 𝑁 ,  𝑛 }  ⊆  𝑒 ) ) | 
						
							| 27 | 22 26 | rexeqbidv | ⊢ ( ( 𝑁  ∈  𝑉  ∧  ( 𝑔  =  𝐺  ∧  𝑘  =  𝑁 ) )  →  ( ∃ 𝑒  ∈  ( Edg ‘ 𝑔 ) { 𝑘 ,  𝑛 }  ⊆  𝑒  ↔  ∃ 𝑒  ∈  𝐸 { 𝑁 ,  𝑛 }  ⊆  𝑒 ) ) | 
						
							| 28 | 18 27 | rabeqbidv | ⊢ ( ( 𝑁  ∈  𝑉  ∧  ( 𝑔  =  𝐺  ∧  𝑘  =  𝑁 ) )  →  { 𝑛  ∈  ( ( Vtx ‘ 𝑔 )  ∖  { 𝑘 } )  ∣  ∃ 𝑒  ∈  ( Edg ‘ 𝑔 ) { 𝑘 ,  𝑛 }  ⊆  𝑒 }  =  { 𝑛  ∈  ( 𝑉  ∖  { 𝑁 } )  ∣  ∃ 𝑒  ∈  𝐸 { 𝑁 ,  𝑛 }  ⊆  𝑒 } ) | 
						
							| 29 | 4 8 12 28 | ovmpodv2 | ⊢ ( 𝑁  ∈  𝑉  →  (  NeighbVtx   =  ( 𝑔  ∈  V ,  𝑘  ∈  ( Vtx ‘ 𝑔 )  ↦  { 𝑛  ∈  ( ( Vtx ‘ 𝑔 )  ∖  { 𝑘 } )  ∣  ∃ 𝑒  ∈  ( Edg ‘ 𝑔 ) { 𝑘 ,  𝑛 }  ⊆  𝑒 } )  →  ( 𝐺  NeighbVtx  𝑁 )  =  { 𝑛  ∈  ( 𝑉  ∖  { 𝑁 } )  ∣  ∃ 𝑒  ∈  𝐸 { 𝑁 ,  𝑛 }  ⊆  𝑒 } ) ) | 
						
							| 30 | 3 29 | mpi | ⊢ ( 𝑁  ∈  𝑉  →  ( 𝐺  NeighbVtx  𝑁 )  =  { 𝑛  ∈  ( 𝑉  ∖  { 𝑁 } )  ∣  ∃ 𝑒  ∈  𝐸 { 𝑁 ,  𝑛 }  ⊆  𝑒 } ) |