Metamath Proof Explorer


Theorem nbi2

Description: Two ways to express "exclusive or". (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 24-Jan-2013)

Ref Expression
Assertion nbi2 ( ¬ ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ∧ ¬ ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 xor3 ( ¬ ( 𝜑𝜓 ) ↔ ( 𝜑 ↔ ¬ 𝜓 ) )
2 pm5.17 ( ( ( 𝜑𝜓 ) ∧ ¬ ( 𝜑𝜓 ) ) ↔ ( 𝜑 ↔ ¬ 𝜓 ) )
3 1 2 bitr4i ( ¬ ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ∧ ¬ ( 𝜑𝜓 ) ) )