Metamath Proof Explorer


Theorem nbn3

Description: Transfer falsehood via equivalence. (Contributed by NM, 11-Sep-2006)

Ref Expression
Hypothesis nbn3.1 𝜑
Assertion nbn3 ( ¬ 𝜓 ↔ ( 𝜓 ↔ ¬ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 nbn3.1 𝜑
2 1 notnoti ¬ ¬ 𝜑
3 2 nbn ( ¬ 𝜓 ↔ ( 𝜓 ↔ ¬ 𝜑 ) )