Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nbrne1 | ⊢ ( ( 𝐴 𝑅 𝐵 ∧ ¬ 𝐴 𝑅 𝐶 ) → 𝐵 ≠ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝐴 𝑅 𝐵 ↔ 𝐴 𝑅 𝐶 ) ) | |
| 2 | 1 | biimpcd | ⊢ ( 𝐴 𝑅 𝐵 → ( 𝐵 = 𝐶 → 𝐴 𝑅 𝐶 ) ) |
| 3 | 2 | necon3bd | ⊢ ( 𝐴 𝑅 𝐵 → ( ¬ 𝐴 𝑅 𝐶 → 𝐵 ≠ 𝐶 ) ) |
| 4 | 3 | imp | ⊢ ( ( 𝐴 𝑅 𝐵 ∧ ¬ 𝐴 𝑅 𝐶 ) → 𝐵 ≠ 𝐶 ) |