Metamath Proof Explorer


Theorem nbrne1

Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012)

Ref Expression
Assertion nbrne1 ( ( 𝐴 𝑅 𝐵 ∧ ¬ 𝐴 𝑅 𝐶 ) → 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 breq2 ( 𝐵 = 𝐶 → ( 𝐴 𝑅 𝐵𝐴 𝑅 𝐶 ) )
2 1 biimpcd ( 𝐴 𝑅 𝐵 → ( 𝐵 = 𝐶𝐴 𝑅 𝐶 ) )
3 2 necon3bd ( 𝐴 𝑅 𝐵 → ( ¬ 𝐴 𝑅 𝐶𝐵𝐶 ) )
4 3 imp ( ( 𝐴 𝑅 𝐵 ∧ ¬ 𝐴 𝑅 𝐶 ) → 𝐵𝐶 )