Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | nbrne1 | ⊢ ( ( 𝐴 𝑅 𝐵 ∧ ¬ 𝐴 𝑅 𝐶 ) → 𝐵 ≠ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝐴 𝑅 𝐵 ↔ 𝐴 𝑅 𝐶 ) ) | |
2 | 1 | biimpcd | ⊢ ( 𝐴 𝑅 𝐵 → ( 𝐵 = 𝐶 → 𝐴 𝑅 𝐶 ) ) |
3 | 2 | necon3bd | ⊢ ( 𝐴 𝑅 𝐵 → ( ¬ 𝐴 𝑅 𝐶 → 𝐵 ≠ 𝐶 ) ) |
4 | 3 | imp | ⊢ ( ( 𝐴 𝑅 𝐵 ∧ ¬ 𝐴 𝑅 𝐶 ) → 𝐵 ≠ 𝐶 ) |