Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nbrne2 | ⊢ ( ( 𝐴 𝑅 𝐶 ∧ ¬ 𝐵 𝑅 𝐶 ) → 𝐴 ≠ 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 𝑅 𝐶 ↔ 𝐵 𝑅 𝐶 ) ) | |
| 2 | 1 | biimpcd | ⊢ ( 𝐴 𝑅 𝐶 → ( 𝐴 = 𝐵 → 𝐵 𝑅 𝐶 ) ) | 
| 3 | 2 | necon3bd | ⊢ ( 𝐴 𝑅 𝐶 → ( ¬ 𝐵 𝑅 𝐶 → 𝐴 ≠ 𝐵 ) ) | 
| 4 | 3 | imp | ⊢ ( ( 𝐴 𝑅 𝐶 ∧ ¬ 𝐵 𝑅 𝐶 ) → 𝐴 ≠ 𝐵 ) |