Step |
Hyp |
Ref |
Expression |
1 |
|
nbuhgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
nbuhgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
nbumgrvtx |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) |
4 |
3
|
expcom |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 ∈ UMGraph → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) ) |
5 |
|
df-nel |
⊢ ( 𝑁 ∉ 𝑉 ↔ ¬ 𝑁 ∈ 𝑉 ) |
6 |
1
|
nbgrnvtx0 |
⊢ ( 𝑁 ∉ 𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |
7 |
5 6
|
sylbir |
⊢ ( ¬ 𝑁 ∈ 𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |
8 |
7
|
adantr |
⊢ ( ( ¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |
9 |
1 2
|
umgrpredgv |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑁 , 𝑛 } ∈ 𝐸 ) → ( 𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) |
10 |
9
|
simpld |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑁 , 𝑛 } ∈ 𝐸 ) → 𝑁 ∈ 𝑉 ) |
11 |
10
|
ex |
⊢ ( 𝐺 ∈ UMGraph → ( { 𝑁 , 𝑛 } ∈ 𝐸 → 𝑁 ∈ 𝑉 ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝑛 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph ) → ( { 𝑁 , 𝑛 } ∈ 𝐸 → 𝑁 ∈ 𝑉 ) ) |
13 |
12
|
con3d |
⊢ ( ( 𝑛 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph ) → ( ¬ 𝑁 ∈ 𝑉 → ¬ { 𝑁 , 𝑛 } ∈ 𝐸 ) ) |
14 |
13
|
ex |
⊢ ( 𝑛 ∈ 𝑉 → ( 𝐺 ∈ UMGraph → ( ¬ 𝑁 ∈ 𝑉 → ¬ { 𝑁 , 𝑛 } ∈ 𝐸 ) ) ) |
15 |
14
|
com13 |
⊢ ( ¬ 𝑁 ∈ 𝑉 → ( 𝐺 ∈ UMGraph → ( 𝑛 ∈ 𝑉 → ¬ { 𝑁 , 𝑛 } ∈ 𝐸 ) ) ) |
16 |
15
|
imp |
⊢ ( ( ¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph ) → ( 𝑛 ∈ 𝑉 → ¬ { 𝑁 , 𝑛 } ∈ 𝐸 ) ) |
17 |
16
|
ralrimiv |
⊢ ( ( ¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph ) → ∀ 𝑛 ∈ 𝑉 ¬ { 𝑁 , 𝑛 } ∈ 𝐸 ) |
18 |
|
rabeq0 |
⊢ ( { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } = ∅ ↔ ∀ 𝑛 ∈ 𝑉 ¬ { 𝑁 , 𝑛 } ∈ 𝐸 ) |
19 |
17 18
|
sylibr |
⊢ ( ( ¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph ) → { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } = ∅ ) |
20 |
8 19
|
eqtr4d |
⊢ ( ( ¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) |
21 |
20
|
ex |
⊢ ( ¬ 𝑁 ∈ 𝑉 → ( 𝐺 ∈ UMGraph → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) ) |
22 |
4 21
|
pm2.61i |
⊢ ( 𝐺 ∈ UMGraph → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) |