Step |
Hyp |
Ref |
Expression |
1 |
|
nbuhgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
nbuhgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
nbgrval |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } ) |
4 |
3
|
adantl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } ) |
5 |
|
simp-4l |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ { 𝑁 , 𝑛 } ⊆ 𝑒 ) → 𝐺 ∈ UPGraph ) |
6 |
|
simpr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ∈ 𝐸 ) |
7 |
6
|
adantr |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ { 𝑁 , 𝑛 } ⊆ 𝑒 ) → 𝑒 ∈ 𝐸 ) |
8 |
|
simpr |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ { 𝑁 , 𝑛 } ⊆ 𝑒 ) → { 𝑁 , 𝑛 } ⊆ 𝑒 ) |
9 |
|
simpr |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑁 ∈ 𝑉 ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → 𝑁 ∈ 𝑉 ) |
11 |
|
vex |
⊢ 𝑛 ∈ V |
12 |
11
|
a1i |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → 𝑛 ∈ V ) |
13 |
|
eldifsn |
⊢ ( 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ↔ ( 𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑁 ) ) |
14 |
|
simpr |
⊢ ( ( 𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑁 ) → 𝑛 ≠ 𝑁 ) |
15 |
14
|
necomd |
⊢ ( ( 𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑁 ) → 𝑁 ≠ 𝑛 ) |
16 |
13 15
|
sylbi |
⊢ ( 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝑁 ≠ 𝑛 ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → 𝑁 ≠ 𝑛 ) |
18 |
10 12 17
|
3jca |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( 𝑁 ∈ 𝑉 ∧ 𝑛 ∈ V ∧ 𝑁 ≠ 𝑛 ) ) |
19 |
18
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝑁 ∈ 𝑉 ∧ 𝑛 ∈ V ∧ 𝑁 ≠ 𝑛 ) ) |
20 |
19
|
adantr |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ { 𝑁 , 𝑛 } ⊆ 𝑒 ) → ( 𝑁 ∈ 𝑉 ∧ 𝑛 ∈ V ∧ 𝑁 ≠ 𝑛 ) ) |
21 |
1 2
|
upgredgpr |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑒 ∈ 𝐸 ∧ { 𝑁 , 𝑛 } ⊆ 𝑒 ) ∧ ( 𝑁 ∈ 𝑉 ∧ 𝑛 ∈ V ∧ 𝑁 ≠ 𝑛 ) ) → { 𝑁 , 𝑛 } = 𝑒 ) |
22 |
5 7 8 20 21
|
syl31anc |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ { 𝑁 , 𝑛 } ⊆ 𝑒 ) → { 𝑁 , 𝑛 } = 𝑒 ) |
23 |
22
|
ex |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) → ( { 𝑁 , 𝑛 } ⊆ 𝑒 → { 𝑁 , 𝑛 } = 𝑒 ) ) |
24 |
|
eleq1 |
⊢ ( { 𝑁 , 𝑛 } = 𝑒 → ( { 𝑁 , 𝑛 } ∈ 𝐸 ↔ 𝑒 ∈ 𝐸 ) ) |
25 |
24
|
biimprd |
⊢ ( { 𝑁 , 𝑛 } = 𝑒 → ( 𝑒 ∈ 𝐸 → { 𝑁 , 𝑛 } ∈ 𝐸 ) ) |
26 |
23 6 25
|
syl6ci |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) → ( { 𝑁 , 𝑛 } ⊆ 𝑒 → { 𝑁 , 𝑛 } ∈ 𝐸 ) ) |
27 |
26
|
rexlimdva |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 → { 𝑁 , 𝑛 } ∈ 𝐸 ) ) |
28 |
|
simpr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ { 𝑁 , 𝑛 } ∈ 𝐸 ) → { 𝑁 , 𝑛 } ∈ 𝐸 ) |
29 |
|
sseq2 |
⊢ ( 𝑒 = { 𝑁 , 𝑛 } → ( { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ { 𝑁 , 𝑛 } ⊆ { 𝑁 , 𝑛 } ) ) |
30 |
29
|
adantl |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ { 𝑁 , 𝑛 } ∈ 𝐸 ) ∧ 𝑒 = { 𝑁 , 𝑛 } ) → ( { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ { 𝑁 , 𝑛 } ⊆ { 𝑁 , 𝑛 } ) ) |
31 |
|
ssidd |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ { 𝑁 , 𝑛 } ∈ 𝐸 ) → { 𝑁 , 𝑛 } ⊆ { 𝑁 , 𝑛 } ) |
32 |
28 30 31
|
rspcedvd |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ { 𝑁 , 𝑛 } ∈ 𝐸 ) → ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 ) |
33 |
32
|
ex |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( { 𝑁 , 𝑛 } ∈ 𝐸 → ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) |
34 |
27 33
|
impbid |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ { 𝑁 , 𝑛 } ∈ 𝐸 ) ) |
35 |
34
|
rabbidva |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) |
36 |
4 35
|
eqtrd |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) |