Step |
Hyp |
Ref |
Expression |
1 |
|
nbupgruvtxres.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
nbupgruvtxres.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
nbupgruvtxres.f |
⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } |
4 |
|
nbupgruvtxres.s |
⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 |
5 |
|
eqid |
⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) |
6 |
5
|
nbgrssovtx |
⊢ ( 𝑆 NeighbVtx 𝐾 ) ⊆ ( ( Vtx ‘ 𝑆 ) ∖ { 𝐾 } ) |
7 |
|
difpr |
⊢ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) = ( ( 𝑉 ∖ { 𝑁 } ) ∖ { 𝐾 } ) |
8 |
1 2 3 4
|
upgrres1lem2 |
⊢ ( Vtx ‘ 𝑆 ) = ( 𝑉 ∖ { 𝑁 } ) |
9 |
8
|
eqcomi |
⊢ ( 𝑉 ∖ { 𝑁 } ) = ( Vtx ‘ 𝑆 ) |
10 |
9
|
a1i |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( 𝑉 ∖ { 𝑁 } ) = ( Vtx ‘ 𝑆 ) ) |
11 |
10
|
difeq1d |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ( 𝑉 ∖ { 𝑁 } ) ∖ { 𝐾 } ) = ( ( Vtx ‘ 𝑆 ) ∖ { 𝐾 } ) ) |
12 |
7 11
|
syl5eq |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( 𝑉 ∖ { 𝑁 , 𝐾 } ) = ( ( Vtx ‘ 𝑆 ) ∖ { 𝐾 } ) ) |
13 |
6 12
|
sseqtrrid |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( 𝑆 NeighbVtx 𝐾 ) ⊆ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) |
14 |
13
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ ( 𝐺 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝐾 } ) ) → ( 𝑆 NeighbVtx 𝐾 ) ⊆ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) |
15 |
|
simpl |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ ( 𝐺 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝐾 } ) ) → ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) |
16 |
15
|
anim1i |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ ( 𝐺 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝐾 } ) ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) ) |
17 |
|
df-3an |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) ↔ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) ) |
18 |
16 17
|
sylibr |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ ( 𝐺 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝐾 } ) ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) ) |
19 |
|
dif32 |
⊢ ( ( 𝑉 ∖ { 𝑁 } ) ∖ { 𝐾 } ) = ( ( 𝑉 ∖ { 𝐾 } ) ∖ { 𝑁 } ) |
20 |
7 19
|
eqtri |
⊢ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) = ( ( 𝑉 ∖ { 𝐾 } ) ∖ { 𝑁 } ) |
21 |
20
|
eleq2i |
⊢ ( 𝑛 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ↔ 𝑛 ∈ ( ( 𝑉 ∖ { 𝐾 } ) ∖ { 𝑁 } ) ) |
22 |
|
eldifsn |
⊢ ( 𝑛 ∈ ( ( 𝑉 ∖ { 𝐾 } ) ∖ { 𝑁 } ) ↔ ( 𝑛 ∈ ( 𝑉 ∖ { 𝐾 } ) ∧ 𝑛 ≠ 𝑁 ) ) |
23 |
21 22
|
bitri |
⊢ ( 𝑛 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ↔ ( 𝑛 ∈ ( 𝑉 ∖ { 𝐾 } ) ∧ 𝑛 ≠ 𝑁 ) ) |
24 |
23
|
simplbi |
⊢ ( 𝑛 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) → 𝑛 ∈ ( 𝑉 ∖ { 𝐾 } ) ) |
25 |
|
eleq2 |
⊢ ( ( 𝐺 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝐾 } ) → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝐾 ) ↔ 𝑛 ∈ ( 𝑉 ∖ { 𝐾 } ) ) ) |
26 |
24 25
|
syl5ibr |
⊢ ( ( 𝐺 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝐾 } ) → ( 𝑛 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) → 𝑛 ∈ ( 𝐺 NeighbVtx 𝐾 ) ) ) |
27 |
26
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ ( 𝐺 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝐾 } ) ) → ( 𝑛 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) → 𝑛 ∈ ( 𝐺 NeighbVtx 𝐾 ) ) ) |
28 |
27
|
imp |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ ( 𝐺 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝐾 } ) ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → 𝑛 ∈ ( 𝐺 NeighbVtx 𝐾 ) ) |
29 |
1 2 3 4
|
nbupgrres |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝐾 ) → 𝑛 ∈ ( 𝑆 NeighbVtx 𝐾 ) ) ) |
30 |
18 28 29
|
sylc |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ ( 𝐺 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝐾 } ) ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → 𝑛 ∈ ( 𝑆 NeighbVtx 𝐾 ) ) |
31 |
14 30
|
eqelssd |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ ( 𝐺 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝐾 } ) ) → ( 𝑆 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) |
32 |
31
|
ex |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ( 𝐺 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝐾 } ) → ( 𝑆 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) ) |