Step |
Hyp |
Ref |
Expression |
1 |
|
nbusgredgeu.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
2 |
1
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( 𝑀 ∈ ( 𝐺 NeighbVtx 𝑁 ) ↔ { 𝑀 , 𝑁 } ∈ 𝐸 ) ) |
3 |
2
|
biimpa |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) → { 𝑀 , 𝑁 } ∈ 𝐸 ) |
4 |
|
eqeq1 |
⊢ ( 𝑒 = { 𝑀 , 𝑁 } → ( 𝑒 = { 𝑀 , 𝑁 } ↔ { 𝑀 , 𝑁 } = { 𝑀 , 𝑁 } ) ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ∧ 𝑒 = { 𝑀 , 𝑁 } ) → ( 𝑒 = { 𝑀 , 𝑁 } ↔ { 𝑀 , 𝑁 } = { 𝑀 , 𝑁 } ) ) |
6 |
|
eqidd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) → { 𝑀 , 𝑁 } = { 𝑀 , 𝑁 } ) |
7 |
3 5 6
|
rspcedvd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) → ∃ 𝑒 ∈ 𝐸 𝑒 = { 𝑀 , 𝑁 } ) |
8 |
|
rmoeq |
⊢ ∃* 𝑒 ∈ 𝐸 𝑒 = { 𝑀 , 𝑁 } |
9 |
|
reu5 |
⊢ ( ∃! 𝑒 ∈ 𝐸 𝑒 = { 𝑀 , 𝑁 } ↔ ( ∃ 𝑒 ∈ 𝐸 𝑒 = { 𝑀 , 𝑁 } ∧ ∃* 𝑒 ∈ 𝐸 𝑒 = { 𝑀 , 𝑁 } ) ) |
10 |
7 8 9
|
sylanblrc |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) → ∃! 𝑒 ∈ 𝐸 𝑒 = { 𝑀 , 𝑁 } ) |