Step |
Hyp |
Ref |
Expression |
1 |
|
nbusgrf1o1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
nbusgrf1o1.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
nbusgrf1o1.n |
⊢ 𝑁 = ( 𝐺 NeighbVtx 𝑈 ) |
4 |
|
nbusgrf1o1.i |
⊢ 𝐼 = { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } |
5 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝑁 ) → 𝐺 ∈ USGraph ) |
6 |
3
|
eleq2i |
⊢ ( 𝑀 ∈ 𝑁 ↔ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) |
7 |
|
nbgrsym |
⊢ ( 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ↔ 𝑈 ∈ ( 𝐺 NeighbVtx 𝑀 ) ) |
8 |
7
|
a1i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ↔ 𝑈 ∈ ( 𝐺 NeighbVtx 𝑀 ) ) ) |
9 |
8
|
biimpd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) → 𝑈 ∈ ( 𝐺 NeighbVtx 𝑀 ) ) ) |
10 |
6 9
|
syl5bi |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝑀 ∈ 𝑁 → 𝑈 ∈ ( 𝐺 NeighbVtx 𝑀 ) ) ) |
11 |
10
|
imp |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝑁 ) → 𝑈 ∈ ( 𝐺 NeighbVtx 𝑀 ) ) |
12 |
2
|
nbusgredgeu |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ ( 𝐺 NeighbVtx 𝑀 ) ) → ∃! 𝑖 ∈ 𝐸 𝑖 = { 𝑈 , 𝑀 } ) |
13 |
5 11 12
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝑁 ) → ∃! 𝑖 ∈ 𝐸 𝑖 = { 𝑈 , 𝑀 } ) |
14 |
|
df-reu |
⊢ ( ∃! 𝑖 ∈ 𝐸 𝑖 = { 𝑈 , 𝑀 } ↔ ∃! 𝑖 ( 𝑖 ∈ 𝐸 ∧ 𝑖 = { 𝑈 , 𝑀 } ) ) |
15 |
13 14
|
sylib |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝑁 ) → ∃! 𝑖 ( 𝑖 ∈ 𝐸 ∧ 𝑖 = { 𝑈 , 𝑀 } ) ) |
16 |
|
anass |
⊢ ( ( ( 𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖 ) ∧ 𝑖 = { 𝑈 , 𝑀 } ) ↔ ( 𝑖 ∈ 𝐸 ∧ ( 𝑈 ∈ 𝑖 ∧ 𝑖 = { 𝑈 , 𝑀 } ) ) ) |
17 |
|
prid1g |
⊢ ( 𝑈 ∈ 𝑉 → 𝑈 ∈ { 𝑈 , 𝑀 } ) |
18 |
17
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝑁 ) → 𝑈 ∈ { 𝑈 , 𝑀 } ) |
19 |
|
eleq2 |
⊢ ( 𝑖 = { 𝑈 , 𝑀 } → ( 𝑈 ∈ 𝑖 ↔ 𝑈 ∈ { 𝑈 , 𝑀 } ) ) |
20 |
18 19
|
syl5ibrcom |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝑁 ) → ( 𝑖 = { 𝑈 , 𝑀 } → 𝑈 ∈ 𝑖 ) ) |
21 |
20
|
pm4.71rd |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝑁 ) → ( 𝑖 = { 𝑈 , 𝑀 } ↔ ( 𝑈 ∈ 𝑖 ∧ 𝑖 = { 𝑈 , 𝑀 } ) ) ) |
22 |
21
|
bicomd |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝑁 ) → ( ( 𝑈 ∈ 𝑖 ∧ 𝑖 = { 𝑈 , 𝑀 } ) ↔ 𝑖 = { 𝑈 , 𝑀 } ) ) |
23 |
22
|
anbi2d |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝑁 ) → ( ( 𝑖 ∈ 𝐸 ∧ ( 𝑈 ∈ 𝑖 ∧ 𝑖 = { 𝑈 , 𝑀 } ) ) ↔ ( 𝑖 ∈ 𝐸 ∧ 𝑖 = { 𝑈 , 𝑀 } ) ) ) |
24 |
16 23
|
syl5bb |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝑁 ) → ( ( ( 𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖 ) ∧ 𝑖 = { 𝑈 , 𝑀 } ) ↔ ( 𝑖 ∈ 𝐸 ∧ 𝑖 = { 𝑈 , 𝑀 } ) ) ) |
25 |
24
|
eubidv |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝑁 ) → ( ∃! 𝑖 ( ( 𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖 ) ∧ 𝑖 = { 𝑈 , 𝑀 } ) ↔ ∃! 𝑖 ( 𝑖 ∈ 𝐸 ∧ 𝑖 = { 𝑈 , 𝑀 } ) ) ) |
26 |
15 25
|
mpbird |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝑁 ) → ∃! 𝑖 ( ( 𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖 ) ∧ 𝑖 = { 𝑈 , 𝑀 } ) ) |
27 |
|
df-reu |
⊢ ( ∃! 𝑖 ∈ 𝐼 𝑖 = { 𝑈 , 𝑀 } ↔ ∃! 𝑖 ( 𝑖 ∈ 𝐼 ∧ 𝑖 = { 𝑈 , 𝑀 } ) ) |
28 |
|
eleq2 |
⊢ ( 𝑒 = 𝑖 → ( 𝑈 ∈ 𝑒 ↔ 𝑈 ∈ 𝑖 ) ) |
29 |
28 4
|
elrab2 |
⊢ ( 𝑖 ∈ 𝐼 ↔ ( 𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖 ) ) |
30 |
29
|
anbi1i |
⊢ ( ( 𝑖 ∈ 𝐼 ∧ 𝑖 = { 𝑈 , 𝑀 } ) ↔ ( ( 𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖 ) ∧ 𝑖 = { 𝑈 , 𝑀 } ) ) |
31 |
30
|
eubii |
⊢ ( ∃! 𝑖 ( 𝑖 ∈ 𝐼 ∧ 𝑖 = { 𝑈 , 𝑀 } ) ↔ ∃! 𝑖 ( ( 𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖 ) ∧ 𝑖 = { 𝑈 , 𝑀 } ) ) |
32 |
27 31
|
bitri |
⊢ ( ∃! 𝑖 ∈ 𝐼 𝑖 = { 𝑈 , 𝑀 } ↔ ∃! 𝑖 ( ( 𝑖 ∈ 𝐸 ∧ 𝑈 ∈ 𝑖 ) ∧ 𝑖 = { 𝑈 , 𝑀 } ) ) |
33 |
26 32
|
sylibr |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝑁 ) → ∃! 𝑖 ∈ 𝐼 𝑖 = { 𝑈 , 𝑀 } ) |