| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nbusgreledg.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 3 | 2 1 | nbusgr | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝐺  NeighbVtx  𝐾 )  =  { 𝑛  ∈  ( Vtx ‘ 𝐺 )  ∣  { 𝐾 ,  𝑛 }  ∈  𝐸 } ) | 
						
							| 4 | 3 | eleq2d | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑁  ∈  ( 𝐺  NeighbVtx  𝐾 )  ↔  𝑁  ∈  { 𝑛  ∈  ( Vtx ‘ 𝐺 )  ∣  { 𝐾 ,  𝑛 }  ∈  𝐸 } ) ) | 
						
							| 5 | 1 2 | usgrpredgv | ⊢ ( ( 𝐺  ∈  USGraph  ∧  { 𝐾 ,  𝑁 }  ∈  𝐸 )  →  ( 𝐾  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 6 | 5 | simprd | ⊢ ( ( 𝐺  ∈  USGraph  ∧  { 𝐾 ,  𝑁 }  ∈  𝐸 )  →  𝑁  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 7 | 6 | ex | ⊢ ( 𝐺  ∈  USGraph  →  ( { 𝐾 ,  𝑁 }  ∈  𝐸  →  𝑁  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 8 | 7 | pm4.71rd | ⊢ ( 𝐺  ∈  USGraph  →  ( { 𝐾 ,  𝑁 }  ∈  𝐸  ↔  ( 𝑁  ∈  ( Vtx ‘ 𝐺 )  ∧  { 𝐾 ,  𝑁 }  ∈  𝐸 ) ) ) | 
						
							| 9 |  | prcom | ⊢ { 𝑁 ,  𝐾 }  =  { 𝐾 ,  𝑁 } | 
						
							| 10 | 9 | eleq1i | ⊢ ( { 𝑁 ,  𝐾 }  ∈  𝐸  ↔  { 𝐾 ,  𝑁 }  ∈  𝐸 ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝐺  ∈  USGraph  →  ( { 𝑁 ,  𝐾 }  ∈  𝐸  ↔  { 𝐾 ,  𝑁 }  ∈  𝐸 ) ) | 
						
							| 12 |  | preq2 | ⊢ ( 𝑛  =  𝑁  →  { 𝐾 ,  𝑛 }  =  { 𝐾 ,  𝑁 } ) | 
						
							| 13 | 12 | eleq1d | ⊢ ( 𝑛  =  𝑁  →  ( { 𝐾 ,  𝑛 }  ∈  𝐸  ↔  { 𝐾 ,  𝑁 }  ∈  𝐸 ) ) | 
						
							| 14 | 13 | elrab | ⊢ ( 𝑁  ∈  { 𝑛  ∈  ( Vtx ‘ 𝐺 )  ∣  { 𝐾 ,  𝑛 }  ∈  𝐸 }  ↔  ( 𝑁  ∈  ( Vtx ‘ 𝐺 )  ∧  { 𝐾 ,  𝑁 }  ∈  𝐸 ) ) | 
						
							| 15 | 14 | a1i | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑁  ∈  { 𝑛  ∈  ( Vtx ‘ 𝐺 )  ∣  { 𝐾 ,  𝑛 }  ∈  𝐸 }  ↔  ( 𝑁  ∈  ( Vtx ‘ 𝐺 )  ∧  { 𝐾 ,  𝑁 }  ∈  𝐸 ) ) ) | 
						
							| 16 | 8 11 15 | 3bitr4rd | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑁  ∈  { 𝑛  ∈  ( Vtx ‘ 𝐺 )  ∣  { 𝐾 ,  𝑛 }  ∈  𝐸 }  ↔  { 𝑁 ,  𝐾 }  ∈  𝐸 ) ) | 
						
							| 17 | 4 16 | bitrd | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑁  ∈  ( 𝐺  NeighbVtx  𝐾 )  ↔  { 𝑁 ,  𝐾 }  ∈  𝐸 ) ) |