Database
GRAPH THEORY
Undirected graphs
Neighbors, complete graphs and universal vertices
Neighbors
nbusgrf1o
Metamath Proof Explorer
Description: The set of neighbors of a vertex is isomorphic to the set of edges
containing the vertex in a simple graph. (Contributed by Alexander van
der Vekens , 19-Dec-2017) (Revised by AV , 28-Oct-2020)
Ref
Expression
Hypotheses
nbusgrf1o.v
⊢ 𝑉 = ( Vtx ‘ 𝐺 )
nbusgrf1o.e
⊢ 𝐸 = ( Edg ‘ 𝐺 )
Assertion
nbusgrf1o
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ∃ 𝑓 𝑓 : ( 𝐺 NeighbVtx 𝑈 ) –1-1 -onto → { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } )
Proof
Step
Hyp
Ref
Expression
1
nbusgrf1o.v
⊢ 𝑉 = ( Vtx ‘ 𝐺 )
2
nbusgrf1o.e
⊢ 𝐸 = ( Edg ‘ 𝐺 )
3
eqid
⊢ ( 𝐺 NeighbVtx 𝑈 ) = ( 𝐺 NeighbVtx 𝑈 )
4
eleq2w
⊢ ( 𝑒 = 𝑐 → ( 𝑈 ∈ 𝑒 ↔ 𝑈 ∈ 𝑐 ) )
5
4
cbvrabv
⊢ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } = { 𝑐 ∈ 𝐸 ∣ 𝑈 ∈ 𝑐 }
6
1 2 3 5
nbusgrf1o1
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ∃ 𝑓 𝑓 : ( 𝐺 NeighbVtx 𝑈 ) –1-1 -onto → { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } )