Step |
Hyp |
Ref |
Expression |
1 |
|
hashnbusgrnn0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
ax-1 |
⊢ ( 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) |
3 |
2
|
2a1d |
⊢ ( 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) → ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) ) ) |
4 |
|
simpr |
⊢ ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) → ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) |
5 |
4
|
adantr |
⊢ ( ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) → ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) |
6 |
|
simprl |
⊢ ( ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) → 𝑀 ∈ 𝑉 ) |
7 |
|
simpr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) → 𝑀 ≠ 𝑈 ) |
8 |
7
|
adantl |
⊢ ( ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) → 𝑀 ≠ 𝑈 ) |
9 |
|
df-nel |
⊢ ( 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ↔ ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) |
10 |
9
|
biimpri |
⊢ ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) → 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) |
11 |
10
|
adantr |
⊢ ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) → 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) |
12 |
11
|
adantr |
⊢ ( ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) → 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) |
13 |
1
|
nbfusgrlevtxm2 |
⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ) |
14 |
5 6 8 12 13
|
syl13anc |
⊢ ( ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ) |
15 |
|
breq1 |
⊢ ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ↔ ( ( ♯ ‘ 𝑉 ) − 1 ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ) ) |
16 |
15
|
adantl |
⊢ ( ( ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) ∧ ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ↔ ( ( ♯ ‘ 𝑉 ) − 1 ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ) ) |
17 |
1
|
fusgrvtxfi |
⊢ ( 𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin ) |
18 |
|
hashcl |
⊢ ( 𝑉 ∈ Fin → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) |
19 |
|
nn0re |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( ♯ ‘ 𝑉 ) ∈ ℝ ) |
20 |
|
1red |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℝ → 1 ∈ ℝ ) |
21 |
|
2re |
⊢ 2 ∈ ℝ |
22 |
21
|
a1i |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℝ → 2 ∈ ℝ ) |
23 |
|
id |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℝ → ( ♯ ‘ 𝑉 ) ∈ ℝ ) |
24 |
|
1lt2 |
⊢ 1 < 2 |
25 |
24
|
a1i |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℝ → 1 < 2 ) |
26 |
20 22 23 25
|
ltsub2dd |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℝ → ( ( ♯ ‘ 𝑉 ) − 2 ) < ( ( ♯ ‘ 𝑉 ) − 1 ) ) |
27 |
23 22
|
resubcld |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℝ → ( ( ♯ ‘ 𝑉 ) − 2 ) ∈ ℝ ) |
28 |
|
peano2rem |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℝ → ( ( ♯ ‘ 𝑉 ) − 1 ) ∈ ℝ ) |
29 |
27 28
|
ltnled |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℝ → ( ( ( ♯ ‘ 𝑉 ) − 2 ) < ( ( ♯ ‘ 𝑉 ) − 1 ) ↔ ¬ ( ( ♯ ‘ 𝑉 ) − 1 ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ) ) |
30 |
26 29
|
mpbid |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℝ → ¬ ( ( ♯ ‘ 𝑉 ) − 1 ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ) |
31 |
19 30
|
syl |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ¬ ( ( ♯ ‘ 𝑉 ) − 1 ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ) |
32 |
17 18 31
|
3syl |
⊢ ( 𝐺 ∈ FinUSGraph → ¬ ( ( ♯ ‘ 𝑉 ) − 1 ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ) |
33 |
32
|
pm2.21d |
⊢ ( 𝐺 ∈ FinUSGraph → ( ( ( ♯ ‘ 𝑉 ) − 1 ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( ( ♯ ‘ 𝑉 ) − 1 ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) |
35 |
34
|
ad3antlr |
⊢ ( ( ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) ∧ ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) → ( ( ( ♯ ‘ 𝑉 ) − 1 ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) |
36 |
16 35
|
sylbid |
⊢ ( ( ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) ∧ ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) |
37 |
36
|
ex |
⊢ ( ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) ) |
38 |
14 37
|
mpid |
⊢ ( ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) |
39 |
38
|
ex |
⊢ ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) ) |
40 |
39
|
com23 |
⊢ ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) ) |
41 |
40
|
ex |
⊢ ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) → ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) ) ) |
42 |
3 41
|
pm2.61i |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) ) |