Step |
Hyp |
Ref |
Expression |
1 |
|
tglineelsb2.p |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
tglineelsb2.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
tglineelsb2.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
4 |
|
tglineelsb2.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
ncolne.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
ncolne.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
ncolne.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
8 |
|
ncolne.2 |
⊢ ( 𝜑 → ¬ ( 𝑋 ∈ ( 𝑌 𝐿 𝑍 ) ∨ 𝑌 = 𝑍 ) ) |
9 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → 𝐺 ∈ TarskiG ) |
10 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → 𝑌 ∈ 𝐵 ) |
11 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → 𝑍 ∈ 𝐵 ) |
12 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → 𝑋 ∈ 𝐵 ) |
13 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
14 |
1 13 2 9 12 11
|
tgbtwntriv1 |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → 𝑋 ∈ ( 𝑋 𝐼 𝑍 ) ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → 𝑋 = 𝑌 ) |
16 |
15
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝑋 𝐼 𝑍 ) = ( 𝑌 𝐼 𝑍 ) ) |
17 |
14 16
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → 𝑋 ∈ ( 𝑌 𝐼 𝑍 ) ) |
18 |
1 3 2 9 10 11 12 17
|
btwncolg1 |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝑋 ∈ ( 𝑌 𝐿 𝑍 ) ∨ 𝑌 = 𝑍 ) ) |
19 |
8 18
|
mtand |
⊢ ( 𝜑 → ¬ 𝑋 = 𝑌 ) |
20 |
19
|
neqned |
⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) |