Database
ELEMENTARY GEOMETRY
Tarskian Geometry
Lines
ncolne2
Metamath Proof Explorer
Description: Non-colinear points are different. (Contributed by Thierry Arnoux , 8-Aug-2019) TODO (NM): maybe ncolne2 could be simplified out and
deleted, replaced by ncolcom .
Ref
Expression
Hypotheses
tglineelsb2.p
⊢ 𝐵 = ( Base ‘ 𝐺 )
tglineelsb2.i
⊢ 𝐼 = ( Itv ‘ 𝐺 )
tglineelsb2.l
⊢ 𝐿 = ( LineG ‘ 𝐺 )
tglineelsb2.g
⊢ ( 𝜑 → 𝐺 ∈ TarskiG )
ncolne.x
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 )
ncolne.y
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 )
ncolne.z
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 )
ncolne.2
⊢ ( 𝜑 → ¬ ( 𝑋 ∈ ( 𝑌 𝐿 𝑍 ) ∨ 𝑌 = 𝑍 ) )
Assertion
ncolne2
⊢ ( 𝜑 → 𝑋 ≠ 𝑍 )
Proof
Step
Hyp
Ref
Expression
1
tglineelsb2.p
⊢ 𝐵 = ( Base ‘ 𝐺 )
2
tglineelsb2.i
⊢ 𝐼 = ( Itv ‘ 𝐺 )
3
tglineelsb2.l
⊢ 𝐿 = ( LineG ‘ 𝐺 )
4
tglineelsb2.g
⊢ ( 𝜑 → 𝐺 ∈ TarskiG )
5
ncolne.x
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 )
6
ncolne.y
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 )
7
ncolne.z
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 )
8
ncolne.2
⊢ ( 𝜑 → ¬ ( 𝑋 ∈ ( 𝑌 𝐿 𝑍 ) ∨ 𝑌 = 𝑍 ) )
9
1 3 2 4 6 7 5 8
ncolcom
⊢ ( 𝜑 → ¬ ( 𝑋 ∈ ( 𝑍 𝐿 𝑌 ) ∨ 𝑍 = 𝑌 ) )
10
1 2 3 4 5 7 6 9
ncolne1
⊢ ( 𝜑 → 𝑋 ≠ 𝑍 )