Metamath Proof Explorer


Theorem ncolne2

Description: Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019) TODO (NM): maybe ncolne2 could be simplified out and deleted, replaced by ncolcom .

Ref Expression
Hypotheses tglineelsb2.p 𝐵 = ( Base ‘ 𝐺 )
tglineelsb2.i 𝐼 = ( Itv ‘ 𝐺 )
tglineelsb2.l 𝐿 = ( LineG ‘ 𝐺 )
tglineelsb2.g ( 𝜑𝐺 ∈ TarskiG )
ncolne.x ( 𝜑𝑋𝐵 )
ncolne.y ( 𝜑𝑌𝐵 )
ncolne.z ( 𝜑𝑍𝐵 )
ncolne.2 ( 𝜑 → ¬ ( 𝑋 ∈ ( 𝑌 𝐿 𝑍 ) ∨ 𝑌 = 𝑍 ) )
Assertion ncolne2 ( 𝜑𝑋𝑍 )

Proof

Step Hyp Ref Expression
1 tglineelsb2.p 𝐵 = ( Base ‘ 𝐺 )
2 tglineelsb2.i 𝐼 = ( Itv ‘ 𝐺 )
3 tglineelsb2.l 𝐿 = ( LineG ‘ 𝐺 )
4 tglineelsb2.g ( 𝜑𝐺 ∈ TarskiG )
5 ncolne.x ( 𝜑𝑋𝐵 )
6 ncolne.y ( 𝜑𝑌𝐵 )
7 ncolne.z ( 𝜑𝑍𝐵 )
8 ncolne.2 ( 𝜑 → ¬ ( 𝑋 ∈ ( 𝑌 𝐿 𝑍 ) ∨ 𝑌 = 𝑍 ) )
9 1 3 2 4 6 7 5 8 ncolcom ( 𝜑 → ¬ ( 𝑋 ∈ ( 𝑍 𝐿 𝑌 ) ∨ 𝑍 = 𝑌 ) )
10 1 2 3 4 5 7 6 9 ncolne1 ( 𝜑𝑋𝑍 )