| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tglngval.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							tglngval.l | 
							⊢ 𝐿  =  ( LineG ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							tglngval.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							tglngval.g | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 5 | 
							
								
							 | 
							tglngval.x | 
							⊢ ( 𝜑  →  𝑋  ∈  𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							tglngval.y | 
							⊢ ( 𝜑  →  𝑌  ∈  𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							tgcolg.z | 
							⊢ ( 𝜑  →  𝑍  ∈  𝑃 )  | 
						
						
							| 8 | 
							
								
							 | 
							ncolrot | 
							⊢ ( 𝜑  →  ¬  ( 𝑍  ∈  ( 𝑋 𝐿 𝑌 )  ∨  𝑋  =  𝑌 ) )  | 
						
						
							| 9 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  ( 𝑌 𝐿 𝑍 )  ∨  𝑌  =  𝑍 ) )  →  𝐺  ∈  TarskiG )  | 
						
						
							| 10 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  ( 𝑌 𝐿 𝑍 )  ∨  𝑌  =  𝑍 ) )  →  𝑌  ∈  𝑃 )  | 
						
						
							| 11 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  ( 𝑌 𝐿 𝑍 )  ∨  𝑌  =  𝑍 ) )  →  𝑍  ∈  𝑃 )  | 
						
						
							| 12 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  ( 𝑌 𝐿 𝑍 )  ∨  𝑌  =  𝑍 ) )  →  𝑋  ∈  𝑃 )  | 
						
						
							| 13 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  ( 𝑌 𝐿 𝑍 )  ∨  𝑌  =  𝑍 ) )  →  ( 𝑋  ∈  ( 𝑌 𝐿 𝑍 )  ∨  𝑌  =  𝑍 ) )  | 
						
						
							| 14 | 
							
								1 2 3 9 10 11 12 13
							 | 
							colrot2 | 
							⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  ( 𝑌 𝐿 𝑍 )  ∨  𝑌  =  𝑍 ) )  →  ( 𝑍  ∈  ( 𝑋 𝐿 𝑌 )  ∨  𝑋  =  𝑌 ) )  | 
						
						
							| 15 | 
							
								8 14
							 | 
							mtand | 
							⊢ ( 𝜑  →  ¬  ( 𝑋  ∈  ( 𝑌 𝐿 𝑍 )  ∨  𝑌  =  𝑍 ) )  |