| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nconnsubb.2 | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 2 |  | nconnsubb.3 | ⊢ ( 𝜑  →  𝐴  ⊆  𝑋 ) | 
						
							| 3 |  | nconnsubb.4 | ⊢ ( 𝜑  →  𝑈  ∈  𝐽 ) | 
						
							| 4 |  | nconnsubb.5 | ⊢ ( 𝜑  →  𝑉  ∈  𝐽 ) | 
						
							| 5 |  | nconnsubb.6 | ⊢ ( 𝜑  →  ( 𝑈  ∩  𝐴 )  ≠  ∅ ) | 
						
							| 6 |  | nconnsubb.7 | ⊢ ( 𝜑  →  ( 𝑉  ∩  𝐴 )  ≠  ∅ ) | 
						
							| 7 |  | nconnsubb.8 | ⊢ ( 𝜑  →  ( ( 𝑈  ∩  𝑉 )  ∩  𝐴 )  =  ∅ ) | 
						
							| 8 |  | nconnsubb.9 | ⊢ ( 𝜑  →  𝐴  ⊆  ( 𝑈  ∪  𝑉 ) ) | 
						
							| 9 |  | connsuba | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  ( ( 𝐽  ↾t  𝐴 )  ∈  Conn  ↔  ∀ 𝑥  ∈  𝐽 ∀ 𝑦  ∈  𝐽 ( ( ( 𝑥  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑦  ∩  𝐴 )  ≠  ∅  ∧  ( ( 𝑥  ∩  𝑦 )  ∩  𝐴 )  =  ∅ )  →  ( ( 𝑥  ∪  𝑦 )  ∩  𝐴 )  ≠  𝐴 ) ) ) | 
						
							| 10 | 1 2 9 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐽  ↾t  𝐴 )  ∈  Conn  ↔  ∀ 𝑥  ∈  𝐽 ∀ 𝑦  ∈  𝐽 ( ( ( 𝑥  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑦  ∩  𝐴 )  ≠  ∅  ∧  ( ( 𝑥  ∩  𝑦 )  ∩  𝐴 )  =  ∅ )  →  ( ( 𝑥  ∪  𝑦 )  ∩  𝐴 )  ≠  𝐴 ) ) ) | 
						
							| 11 | 5 6 7 | 3jca | ⊢ ( 𝜑  →  ( ( 𝑈  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑉  ∩  𝐴 )  ≠  ∅  ∧  ( ( 𝑈  ∩  𝑉 )  ∩  𝐴 )  =  ∅ ) ) | 
						
							| 12 |  | ineq1 | ⊢ ( 𝑥  =  𝑈  →  ( 𝑥  ∩  𝐴 )  =  ( 𝑈  ∩  𝐴 ) ) | 
						
							| 13 | 12 | neeq1d | ⊢ ( 𝑥  =  𝑈  →  ( ( 𝑥  ∩  𝐴 )  ≠  ∅  ↔  ( 𝑈  ∩  𝐴 )  ≠  ∅ ) ) | 
						
							| 14 |  | ineq1 | ⊢ ( 𝑥  =  𝑈  →  ( 𝑥  ∩  𝑦 )  =  ( 𝑈  ∩  𝑦 ) ) | 
						
							| 15 | 14 | ineq1d | ⊢ ( 𝑥  =  𝑈  →  ( ( 𝑥  ∩  𝑦 )  ∩  𝐴 )  =  ( ( 𝑈  ∩  𝑦 )  ∩  𝐴 ) ) | 
						
							| 16 | 15 | eqeq1d | ⊢ ( 𝑥  =  𝑈  →  ( ( ( 𝑥  ∩  𝑦 )  ∩  𝐴 )  =  ∅  ↔  ( ( 𝑈  ∩  𝑦 )  ∩  𝐴 )  =  ∅ ) ) | 
						
							| 17 | 13 16 | 3anbi13d | ⊢ ( 𝑥  =  𝑈  →  ( ( ( 𝑥  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑦  ∩  𝐴 )  ≠  ∅  ∧  ( ( 𝑥  ∩  𝑦 )  ∩  𝐴 )  =  ∅ )  ↔  ( ( 𝑈  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑦  ∩  𝐴 )  ≠  ∅  ∧  ( ( 𝑈  ∩  𝑦 )  ∩  𝐴 )  =  ∅ ) ) ) | 
						
							| 18 |  | uneq1 | ⊢ ( 𝑥  =  𝑈  →  ( 𝑥  ∪  𝑦 )  =  ( 𝑈  ∪  𝑦 ) ) | 
						
							| 19 | 18 | ineq1d | ⊢ ( 𝑥  =  𝑈  →  ( ( 𝑥  ∪  𝑦 )  ∩  𝐴 )  =  ( ( 𝑈  ∪  𝑦 )  ∩  𝐴 ) ) | 
						
							| 20 | 19 | neeq1d | ⊢ ( 𝑥  =  𝑈  →  ( ( ( 𝑥  ∪  𝑦 )  ∩  𝐴 )  ≠  𝐴  ↔  ( ( 𝑈  ∪  𝑦 )  ∩  𝐴 )  ≠  𝐴 ) ) | 
						
							| 21 | 17 20 | imbi12d | ⊢ ( 𝑥  =  𝑈  →  ( ( ( ( 𝑥  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑦  ∩  𝐴 )  ≠  ∅  ∧  ( ( 𝑥  ∩  𝑦 )  ∩  𝐴 )  =  ∅ )  →  ( ( 𝑥  ∪  𝑦 )  ∩  𝐴 )  ≠  𝐴 )  ↔  ( ( ( 𝑈  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑦  ∩  𝐴 )  ≠  ∅  ∧  ( ( 𝑈  ∩  𝑦 )  ∩  𝐴 )  =  ∅ )  →  ( ( 𝑈  ∪  𝑦 )  ∩  𝐴 )  ≠  𝐴 ) ) ) | 
						
							| 22 |  | ineq1 | ⊢ ( 𝑦  =  𝑉  →  ( 𝑦  ∩  𝐴 )  =  ( 𝑉  ∩  𝐴 ) ) | 
						
							| 23 | 22 | neeq1d | ⊢ ( 𝑦  =  𝑉  →  ( ( 𝑦  ∩  𝐴 )  ≠  ∅  ↔  ( 𝑉  ∩  𝐴 )  ≠  ∅ ) ) | 
						
							| 24 |  | ineq2 | ⊢ ( 𝑦  =  𝑉  →  ( 𝑈  ∩  𝑦 )  =  ( 𝑈  ∩  𝑉 ) ) | 
						
							| 25 | 24 | ineq1d | ⊢ ( 𝑦  =  𝑉  →  ( ( 𝑈  ∩  𝑦 )  ∩  𝐴 )  =  ( ( 𝑈  ∩  𝑉 )  ∩  𝐴 ) ) | 
						
							| 26 | 25 | eqeq1d | ⊢ ( 𝑦  =  𝑉  →  ( ( ( 𝑈  ∩  𝑦 )  ∩  𝐴 )  =  ∅  ↔  ( ( 𝑈  ∩  𝑉 )  ∩  𝐴 )  =  ∅ ) ) | 
						
							| 27 | 23 26 | 3anbi23d | ⊢ ( 𝑦  =  𝑉  →  ( ( ( 𝑈  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑦  ∩  𝐴 )  ≠  ∅  ∧  ( ( 𝑈  ∩  𝑦 )  ∩  𝐴 )  =  ∅ )  ↔  ( ( 𝑈  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑉  ∩  𝐴 )  ≠  ∅  ∧  ( ( 𝑈  ∩  𝑉 )  ∩  𝐴 )  =  ∅ ) ) ) | 
						
							| 28 |  | sseqin2 | ⊢ ( 𝐴  ⊆  ( 𝑈  ∪  𝑦 )  ↔  ( ( 𝑈  ∪  𝑦 )  ∩  𝐴 )  =  𝐴 ) | 
						
							| 29 | 28 | necon3bbii | ⊢ ( ¬  𝐴  ⊆  ( 𝑈  ∪  𝑦 )  ↔  ( ( 𝑈  ∪  𝑦 )  ∩  𝐴 )  ≠  𝐴 ) | 
						
							| 30 |  | uneq2 | ⊢ ( 𝑦  =  𝑉  →  ( 𝑈  ∪  𝑦 )  =  ( 𝑈  ∪  𝑉 ) ) | 
						
							| 31 | 30 | sseq2d | ⊢ ( 𝑦  =  𝑉  →  ( 𝐴  ⊆  ( 𝑈  ∪  𝑦 )  ↔  𝐴  ⊆  ( 𝑈  ∪  𝑉 ) ) ) | 
						
							| 32 | 31 | notbid | ⊢ ( 𝑦  =  𝑉  →  ( ¬  𝐴  ⊆  ( 𝑈  ∪  𝑦 )  ↔  ¬  𝐴  ⊆  ( 𝑈  ∪  𝑉 ) ) ) | 
						
							| 33 | 29 32 | bitr3id | ⊢ ( 𝑦  =  𝑉  →  ( ( ( 𝑈  ∪  𝑦 )  ∩  𝐴 )  ≠  𝐴  ↔  ¬  𝐴  ⊆  ( 𝑈  ∪  𝑉 ) ) ) | 
						
							| 34 | 27 33 | imbi12d | ⊢ ( 𝑦  =  𝑉  →  ( ( ( ( 𝑈  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑦  ∩  𝐴 )  ≠  ∅  ∧  ( ( 𝑈  ∩  𝑦 )  ∩  𝐴 )  =  ∅ )  →  ( ( 𝑈  ∪  𝑦 )  ∩  𝐴 )  ≠  𝐴 )  ↔  ( ( ( 𝑈  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑉  ∩  𝐴 )  ≠  ∅  ∧  ( ( 𝑈  ∩  𝑉 )  ∩  𝐴 )  =  ∅ )  →  ¬  𝐴  ⊆  ( 𝑈  ∪  𝑉 ) ) ) ) | 
						
							| 35 | 21 34 | rspc2v | ⊢ ( ( 𝑈  ∈  𝐽  ∧  𝑉  ∈  𝐽 )  →  ( ∀ 𝑥  ∈  𝐽 ∀ 𝑦  ∈  𝐽 ( ( ( 𝑥  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑦  ∩  𝐴 )  ≠  ∅  ∧  ( ( 𝑥  ∩  𝑦 )  ∩  𝐴 )  =  ∅ )  →  ( ( 𝑥  ∪  𝑦 )  ∩  𝐴 )  ≠  𝐴 )  →  ( ( ( 𝑈  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑉  ∩  𝐴 )  ≠  ∅  ∧  ( ( 𝑈  ∩  𝑉 )  ∩  𝐴 )  =  ∅ )  →  ¬  𝐴  ⊆  ( 𝑈  ∪  𝑉 ) ) ) ) | 
						
							| 36 | 3 4 35 | syl2anc | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐽 ∀ 𝑦  ∈  𝐽 ( ( ( 𝑥  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑦  ∩  𝐴 )  ≠  ∅  ∧  ( ( 𝑥  ∩  𝑦 )  ∩  𝐴 )  =  ∅ )  →  ( ( 𝑥  ∪  𝑦 )  ∩  𝐴 )  ≠  𝐴 )  →  ( ( ( 𝑈  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑉  ∩  𝐴 )  ≠  ∅  ∧  ( ( 𝑈  ∩  𝑉 )  ∩  𝐴 )  =  ∅ )  →  ¬  𝐴  ⊆  ( 𝑈  ∪  𝑉 ) ) ) ) | 
						
							| 37 | 11 36 | mpid | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐽 ∀ 𝑦  ∈  𝐽 ( ( ( 𝑥  ∩  𝐴 )  ≠  ∅  ∧  ( 𝑦  ∩  𝐴 )  ≠  ∅  ∧  ( ( 𝑥  ∩  𝑦 )  ∩  𝐴 )  =  ∅ )  →  ( ( 𝑥  ∪  𝑦 )  ∩  𝐴 )  ≠  𝐴 )  →  ¬  𝐴  ⊆  ( 𝑈  ∪  𝑉 ) ) ) | 
						
							| 38 | 10 37 | sylbid | ⊢ ( 𝜑  →  ( ( 𝐽  ↾t  𝐴 )  ∈  Conn  →  ¬  𝐴  ⊆  ( 𝑈  ∪  𝑉 ) ) ) | 
						
							| 39 | 8 38 | mt2d | ⊢ ( 𝜑  →  ¬  ( 𝐽  ↾t  𝐴 )  ∈  Conn ) |