Step |
Hyp |
Ref |
Expression |
1 |
|
eluz2nn |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) → 𝑖 ∈ ℕ ) |
2 |
1
|
adantr |
⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → 𝑖 ∈ ℕ ) |
3 |
|
eluz2b3 |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑖 ∈ ℕ ∧ 𝑖 ≠ 1 ) ) |
4 |
|
neneq |
⊢ ( 𝑖 ≠ 1 → ¬ 𝑖 = 1 ) |
5 |
3 4
|
simplbiim |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) → ¬ 𝑖 = 1 ) |
6 |
5
|
anim1ci |
⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ) |
7 |
2 6
|
jca |
⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( 𝑖 ∈ ℕ ∧ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ) ) |
8 |
|
neqne |
⊢ ( ¬ 𝑖 = 1 → 𝑖 ≠ 1 ) |
9 |
8
|
anim1ci |
⊢ ( ( ¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ ) → ( 𝑖 ∈ ℕ ∧ 𝑖 ≠ 1 ) ) |
10 |
9 3
|
sylibr |
⊢ ( ( ¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) |
11 |
10
|
ex |
⊢ ( ¬ 𝑖 = 1 → ( 𝑖 ∈ ℕ → 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ) |
12 |
11
|
adantl |
⊢ ( ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) → ( 𝑖 ∈ ℕ → 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ) |
13 |
12
|
impcom |
⊢ ( ( 𝑖 ∈ ℕ ∧ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ) → 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝑖 ∈ ℕ ∧ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) |
15 |
|
simprrl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝑖 ∈ ℕ ∧ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ) ) → ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) |
16 |
14 15
|
jca |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝑖 ∈ ℕ ∧ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ) ) → ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) |
17 |
16
|
ex |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝑖 ∈ ℕ ∧ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ) → ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ) |
18 |
7 17
|
impbid2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ↔ ( 𝑖 ∈ ℕ ∧ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ) ) ) |
19 |
18
|
rexbidv2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ↔ ∃ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ) ) |
20 |
|
rexanali |
⊢ ( ∃ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ↔ ¬ ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) ) |
21 |
20
|
a1i |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ↔ ¬ ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) ) ) |
22 |
|
coprmgcdb |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) |
23 |
22
|
necon3bbid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ¬ ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) ↔ ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
24 |
19 21 23
|
3bitrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ↔ ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |